
Download from Wow! eBook <www.wowebook.com>

What Readers Are Saying About Pragmatic Guide to Subversion

Mike has been around the block with Subversion and knows the toolset
intimately. Just as importantly, he’s seen firsthand how it’s used on real
projects. Those two aspects come together in this book with the fundamen-
tals of source control with Subversion, guided by real-world, pragmatic (of
course!) experience. As a Subversion user and occasional noob, this is the
book I want to guide me day to day and dig me out of those irksome holes.

Jim Webber
Author, REST in Practice

I really like the organization of the book. I found Pragmatic Guide to Sub-
version to be very easy to read, and it really gets the information across in
an engaging way. This book is clear, concise, and comprehensive. It’s an
indispensable reference for anyone working with Subversion.

Ian Bourke
Independent software developer, UK

A good digest of Subversion’s capabilities. The author’s writing style is
terse yet conversational, and the book progressed nicely from basic topics
to those more advanced. Overall, I think the book is an excellent follow-up
to Pragmatic Version Control Using Subversion.

Graham Nash
Retlang, Message-based concurrency in .NET

This is a book worth having since the “full” Pragmatic Subversion book is
too big for every developer on a team to read. I was a fan of Mike’s original
Subversion book, and he’s carried on the style into this pocket reference.
This is a book I recommend.

Mike Roberts
Senior software engineer, DRW Trading Group

Pragmatic Guide to Subversion has everything I needed to get up and run-
ning with SVN on my Mac. Being new to Mac OS X, it was a welcome sur-
prise to have examples in multiple operating systems.

Michael Raczynski
Software architect, Canada

Download from Wow! eBook <www.wowebook.com>

Pragmatic Guide to Subversion
Mike Mason

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Download from Wow! eBook <www.wowebook.com>

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and The Pragmatic Pro-
grammers, LLC was aware of a trademark claim, the designations have been printed in initial
capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic
Programming, Pragmatic Bookshelf and the linking g device are trademarks of The Pragmatic
Programmers, LLC.
Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.
Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please
visit us at http://www.pragprog.com.
The team that produced this book includes:
Editor: Jackie Carter
Indexing: Potomac Indexing, LLC
Copy edit: Kim Wimpsett
Layout: Steve Peter
Production: Janet Furlow
Customer support: Ellie Callahan
International: Juliet Benda

Copyright © 2010 Pragmatic Programmers, LLC.
All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher.
Printed in the United States of America.

ISBN-10: 1-934356-61-1
ISBN-13: 978-1-934356-61-6
Printed on acid-free paper.
P1.0 printing, October 2010
Version: 2010-11-12

Download from Wow! eBook <www.wowebook.com>

http://www.pragprog.com

Contents
Acknowledgments 8

Introduction 9
Who Is This Book For? . 10
How to Read This Book . 11
Subversion Versions . 12
Online Resources . 12

I Getting Started 13
Task 1. Installing a Command-Line Client 16

Task 2. Installing a Graphical Client on Windows 18

Task 3. Installing a Graphical Client on Mac OS X 20

Task 4. Creating a Local Repository 22

Task 5. Creating an Empty Project 24

Task 6. Creating a Project from an Existing Source Tree 26
II Working with Subversion 28

Task 7. Checking Out a Working Copy 32

Task 8. Seeing What You’ve Changed 34

Task 9. Seeing What You’ve Changed Using Tortoise 36

Task 10. SeeingWhat You’ve Changed Using Cornerstone 38

Task 11. Committing Changes 40

Task 12. Adding Files and Directories 42

Download from Wow! eBook <www.wowebook.com>

CONTENTS 6

Task 13. Removing Files and Directories 44

Task 14. Moving and Renaming Files and Directories 46

Task 15. Reverting Working Copy Changes 48

Task 16. Ignoring Files 50
III Working with a Team 52

Task 17. Updating to the Latest Revision 56

Task 18. Handling Conflicts 58

Task 19. Handling Conflicts Using Tortoise 60

Task 20. Handling Conflicts Using Cornerstone 62
IV Using the History 64

Task 21. Viewing the Log 66

Task 22. Detective Work with svn blame 68

Task 23. Reverting a Committed Revision 70
V Branching, Merging, and Tagging 72

Task 24. Creating a Branch 78

Task 25. Switching to a Branch 80

Task 26. Merging Changes from Trunk to Branch 82

Task 27. Using Change Tracking 84

Task 28. Tagging a Release 86
VI File Locking 88

Task 29. Enabling File Locking 92

Task 30. Obtaining a Lock 94

Task 31. Releasing a Lock 96

Task 32. Breaking Someone Else’s Lock 98

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=6

CONTENTS 7

VII Setting Up a Server 100
Task 33. Installing Subversion Server 104

Task 34. Creating a Repository 106

Task 35. Installing Subversion Server on Windows 108

Task 36. Using Third-Party Subversion Hosting 110

Task 37. Migrating a CVS Repository 112

Task 38. Backing Up and Restoring 114

Task 39. Performing Full Weekly Backups 116

Task 40. Performing Incremental Daily Backups 118

Task 41. Securing a Repository 120

Task 42. Using Repository Hooks 122
VIII Advanced Topics 124

Task 43. Working with Properties 126

Task 44. Using Externals 128

Task 45. Organizing Multiple Projects 130

Task 46. Storing Third-Party Code 132

Task 47. Working Directly with the Repository 134

Task 48. Using Patch Files 136

A Bibliography 138

Index 139

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=7

Acknowledgments
Every book—even a shorter one like this Pragmatic Guide—represents an
incredible amount of work by a large group of people. As an author, my con-
tribution is only a fraction of the effort that’s required to get a book into the
hands of readers, and I’d like to thank everyone else involved.
First and foremost, I’d like to thank my family for supporting me while writ-
ing another book. I’m a new dad with a young son at home, and despite my
best efforts to write faster, our daughter arrived too before I finished the book.
So, to my wife, Michelle, and her mom, Pat, thanks for taking care of the kids
and letting me have those Sundays in the office writing the book. To Ben and
Natalie, thanks for not being too upset when “Daddy working!” I promise to
always come home.
Next, the Pragmatic Guide series idea came from Travis Swicegood, author of
the excellent Pragmatic Version Control Using Git [Swi08]. I really liked the
idea of a “get up to speed fast” Subversion book, so thank you, Travis. The
folks at Pragmatic Bookshelf were super-awesome to work with as usual,
although the operation is a lot bigger than when I did the original Subversion
book five years ago. To Jackie Carter, my editor, thanks for keeping me on
track and (nicely) pushing me to finish. I always felt that you had lots of time
for me, and the book is much better as a result. To Dave and Andy, thanks
for building a nontraditional publishing company that creates great books and
gives authors a good deal.
A small army of people helped with the technical content in the book. To
my reviewers, Rob Baillie, Ian Bourke, Kevin Gisi, Leesa Hicks, Michael
Raczynski, Mike Roberts, and Graham Nash, thank you very much indeed.
Your feedback has made this book better, and your encouraging words helped
me finish the writing. To my fellow ThoughtWorks authors, especially Martin
Fowler and Jonathan McCracken, thank you for being a sounding board while
I worked on the book.
Finally, I’d like to thank you, the reader, for choosing this book. I hope you
enjoy reading it—I certainly enjoyed writing it.

Download from Wow! eBook <www.wowebook.com>

Introduction
Subversion is a wildly popular open source version control system, avail-
able for free over the Internet. Subversion is widely considered the de facto
standard1 for version control tools, even though such a thing is difficult to
measure, and as a developer, you are likely to encounter Subversion as part of
your work.
Subversion is a mature, fully featured system that is commonly used by both
commercial and open source development teams. You can buy commercial
support and consulting services to help you install, configure, and use Sub-
version. If you don’t want the hassle of running a Subversion server, you can
get a third party to do it for you, at a low cost or even for free.
Subversion is a centralized version control system, meaning that it uses a cen-
tral server to store files and enable team collaboration. Clients can work dis-
connected from the network—on an airplane, for example—and need a net-
work connection only if they actually want to commit changes to the server.
This traditional centralized model assumes that development teams have rea-
sonable network connectivity to the server. In contrast, some newer decen-
tralized version control systems use a model where each user acts kind of like
a server. Users can swap changes between each other without needing a cen-
tral server. Most organizations will be fine with the centralized model used
by Subversion, but it’s worth being aware that other collaboration styles are
possible.
Subversion is popular because it has all the features that programmers need
and very few extra bells and whistles. It just does version control, and it does
it well.
Subversion can track version information for directories and metadata, as well
as files. Treating directories as first-class objects means that Subversion can
track history across directory moves and renames, unlike some older version
1. Determining the exact market share for Subversion is difficult, but several online polls
rate Subversion more popular than any other version control tool. Martin Fowler suggests that
within the Agile/XP community, only Subversion, Git, and Mercurial would be recommended:
http://martinfowler.com/bliki/VersionControlTools.html.

Download from Wow! eBook <www.wowebook.com>

http://martinfowler.com/bliki/VersionControlTools.html

WHO IS THIS BOOK FOR? 10

control systems. Every file and directory can have arbitrary metadata associ-
ated with it using Subversion properties.
Committing a change is atomic, similar to committing to a database. Either
the whole commit succeeds or is rolled back; other users never see a half-
finished commit. As part of the atomic commit process, Subversion groups
all your changes into a revision (sometimes called a changeset) and assigns
a revision number to the change, unlike older systems that apply a revision
number to each individual file. By grouping changes to multiple files into
a single logical unit, developers are able to better organize and track their
changes.
Subversion has cheap branches and tags that can be created almost instantly.
Branches are used to distinguish different lines of development, most com-
monly to separate code that is in production vs. code that is being actively
developed. Tags are used to “mark” the state of the code at a particular point
in time so that state can be re-created later. Subversion also supports merge
tracking, which helps automatically merge changes between branches.
Subversion is a truly multiplatform tool. You can run Subversion on Win-
dows, Linux, OS X, and many other flavors of Unix. Each of these operating
systems is considered a first-class platform by the Subversion developers, and
you can run a production-strength server on any of them. A Subversion client
can talk to a Subversion server even if the client and server are running on
different operating systems. This is good news for anyone trying to fit Sub-
version into their existing infrastructure. For those evaluating Subversion, the
wide choice of operating system makes things much easier since you can run
a server on pretty much any spare machine.

Who Is This Book For?

Most developers have at least some experience with a source control tool and
are expected to fluidly switch between tools depending on where they are
working. This book was written to bridge the gap between knowing some-
thing about version control and knowing about Subversion specifically.
Pragmatic Guide to Subversion will quickly get you up to speed on Subver-
sion. We don’t spend a lot of time covering the philosophy of version control
or trying to persuade you it’s a good idea to store your files somewhere safe.
If you are interested in a broader discussion of version control concepts and
some of the reasoning behind what we do, check out Pragmatic Version Con-
trol Using Subversion [Mas06],2 my previous book.
2. http://pragprog.com/titles/svn2/

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/svn2/
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=10

HOW TO READ THIS BOOK 11

How to Read This Book

This book is organized into parts that each cover a portion of the Subversion
software management “life cycle.” Each part of the book contains some intro-
ductory pages discussing how Subversion handles particular concepts. You
should read the introductions to get a feel for the overall concepts and how
everything ties together, but after that, feel free to jump straight to a particular
task. If you are new to source control, it’s perfectly OK to read the book in
order—everything will make sense and give you a good grounding in Subver-
sion concepts.
The book is laid out as double-page spreads for each task, with a discussion
of the task on the left page and the actual steps to achieve the task on the right
page. This works naturally for the printed book, but many readers will be
reading a digital version. If you have the screen space for it, try setting your
reader to show two pages side by side to enhance your reading experience.
The parts of the book are organized as follows:

• Part I: Getting Started covers core Subversion concepts such as the
client, server, repository, and working copies. You will learn how to
choose and install a Subversion client, how to set up a local repository,
and how to import your existing code into Subversion.

• Part II: Working with Subversion discusses daily workflow when using
Subversion. You’ll learn how to check out from a repository, examine
or undo your changes, and commit to the repository.

• Part III: Working with a Team covers how to use Subversion in a team
setting, how to stay in sync with your team, and how to resolve con-
flicts.

• Part IV: Using the History shows you Subversion’s powerful history
tools so you can understand changes made to your source tree and who
made them. In some cases, you might want to undo changes that have
been committed to the repository—this part shows you how.

• Part V: Branching, Merging, and Tagging tackles one of the more com-
plex topics in source control. Using branches and tags, you can reliably
release software to production and support it going forward.

• Part VI: File Locking covers Subversion’s optional file locking fea-
tures, which is useful if your repository contains unmergeable files
such as spreadsheets or graphics.

• Part VII: Setting Up a Server shows you how to install a Subversion
server on Linux or Windows, including securing and backing up the
server. If you’d like to use third-party hosting instead of running your
own server, we discuss how to do this too.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=11

SUBVERSION VERSIONS 12

• Part VIII: Advanced Topics discusses Subversion features that you
might not need every day but that will be important maybe once or
twice when you set up a project. Included here is information on how
to store multiple projects in a single Subversion repository and how to
store third-party code in your own repository.

Subversion Versions

Subversion is developed by a team of programmers collaborating over the
Internet. It’s open source, and the Subversion team regularly releases new
versions. Major versions are given numbers such as 1.6 or 1.7, with patch and
bug fix releases getting numbers like 1.6.3, 1.7.1, and so on.
In general, you should always use the newest release of Subversion, because
new features, bug fixes, and performance improvements are continually being
made by the Subversion developers. Newmajor versions are always backward
compatible with older servers and working copies—so client version 1.5.x
will work with server version 1.6.x—but the opposite is not always true.
Always upgrade all the clients on a computer at the same time. For example,
if you have both the command-line client and a graphical client and you want
to upgrade to Subversion 1.7, upgrade both the command-line and graphi-
cal clients at the same time. If you don’t do this, one or other of the clients
might complain about the working copy being in a new format that they don’t
understand.
In general, it’s always safe to upgrade a Subversion client, but a Subversion
server requires more attention. You should always ensure you have a reposi-
tory backup before doing a server upgrade and that you have tested that the
backup restores correctly.

Online Resources

All Pragmatic books have an online component. You can find the home page
for this book here:
http://pragprog.com/titles/pg_svn/
From here you can download code and the example mBench project used
throughout the book, view the book’s errata, and chat with the author and
other readers in a dedicated online forum.
Subversion is a mature open source system, and there is a lot of community
support for it. A web search will usually turn up loads of extra information
about a topic, most of which is excellent and high quality. Don’t be afraid to
look beyond the tasks in this book and explore for yourself.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/pg_svn/
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=12

Part I

Getting Started

Download from Wow! eBook <www.wowebook.com>

GETTING STARTED 14

To use Subversion, you need a server and a client. The server stores

files inside a repository and makes the repository available over a

network, either a LAN or the Internet. The client talks to the server

and creates a working copy of the files from the repository. Users

make changes to their files and then commit the changes to the

repository where other members of their team can see them.

internet

repository

Alice

Bill

Subversion can secure network connections using SSL, the same

technology used to protect credit card information online, or SSH,

the secure shell used to administer Unix machines across the Inter-

net. Subversion can store user credentials in a simple password file

or integrate with an existing store such as Active Directory or LDAP.

Most users won’t need to worry about administering a Subversion

server, since you can easily use a third-party hosting provider over

the Internet or get your company’s server operations team to provi-

sion a Subversion server. If you do need to run a server yourself, it’s

pretty easy; see Task 33, Installing Subversion Server , on page 104 for

more details.

Subversion was designed to be easily extended, so a wide range

of different clients are available. The basic command-line client is

available for most operating systems and will perform all the differ-

ent Subversion functions admirably—you might never need more

than the command-line client. For some operations, it’s nice to have

a GUI to make things easier, so a wide range of graphical Subver-

sion clients are also available. Doing check-ins, merges, and history

browsing can particularly benefit from a GUI.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=14

GETTING STARTED 15

For tasks in this book, we are using the command-line client on

Ubuntu Linux. The client is very similar on Windows and Mac, and

all the command-line examples will work on all three operating sys-

tems. We’ve chosen the TortoiseSVN graphical client for Windows

and the Cornerstone graphical client for Mac OS X. All of the tasks in

the book include instructions on how to do the job using the graph-

ical clients as well as the command-line client.

If you are using an integrated development environment (IDE) such

as IntelliJ, Eclipse, or Xcode, you’ll find that it supports Subversion

out of the box. You can update working copies, fix conflicts, commit

changes, and view history without leaving the IDE. Other IDEs such

as Visual Studio require a plug-in to work with Subversion, but once

you’ve installed the plug-in, you can work with Subversion seam-

lessly. If you’re using an IDE, it’s definitely worth checking out its sup-

port for Subversion. Good IDE integration for your source control tool

can be a significant productivity enhancement.

Covered in this part:

• First you’ll need to install a Subversion client. If you’re on Linux

or prefer a command-line client, refer to Task 1, Installing a

Command-Line Client , on the next page. Windows users should

refer to Task 2, Installing a Graphical Client on Windows, on

page 18. Mac users should read Task 3, Installing a Graphical

Client on Mac OS X , on page 20.

• If you don’t have a Subversion repository already set up, Task

4, Creating a Local Repository , on page 22 will show you how

to set up a local file repository for learning Subversion.

• Once you have a Subversion repository in place, refer to Task

5, Creating an Empty Project , on page 24 to start off with a

blank project in your repository.

• If you already have source code that you’d like to store in

Subversion, Task 6, Creating a Project from an Existing Source

Tree, on page 26 shows you how to import your existing source

code into Subversion.

Let’s jump right into installing Subversion.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=15

INSTALLING A COMMAND-LINE CLIENT 16

1 Installing a Command-Line Client

We recommend installing the command-line client even if you intend to do
most of your work with a graphical client. It’s useful to have the basic
functionality available as a fallback, in case you can’t get the GUI to do what
you want.
Installing the client on Windows is fairly straightforward; just double-click
the installer from CollabNet, and it will set everything up for you. You can
get the Windows command-line client from other distributors than
CollabNet, but the installers generally aren’t as friendly.
Installing Subversion on the Mac is somewhat complicated because you have
several options. Depending on which release of OS X you’re using, you may
already have the command-line Subversion client. Snow Leopard comes
with Subversion 1.6, Leopard comes with Subversion 1.4, and older releases
of OS X don’t come with Subversion at all. If you’re using anything older
than Snow Leopard, you should upgrade to the latest release of Subversion.
If you have MacPorts or Fink installed on your system, then you can use their
package managers to install Subversion. If you haven’t heard of these tools,
don’t worry; they’re just a convenient way to get Unix tools on the Mac.
Subversion is available as part of the official Ubuntu distribution, so it might
already be installed on your system. If not, just use the apt package manager
to install it. Graphical Subversion clients are available for Ubuntu such as
Subcommander or RapidSVN, but for the purposes of this book, we’ll stick
to the command-line client.
If you’re more comfortable using the Ubuntu desktop than the command
line, you can also install Subversion using Synaptic, Ubuntu’s graphical
package manager.
Once you’ve installed the Subversion command-line client, you should be
able to open a command prompt and run Subversion commands. To see what
release of Subversion is installed, run svn --version. You should see
something like this:
prompt> svn --version

svn, version 1.6.12 (r955767)

compiled Jun 23 2010, 10:32:19

Make sure you have Subversion 1.6 or newer. The working copy format
changed in Subversion 1.5 and again in 1.6, and older clients cannot use the
new formats.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=16

INSTALLING A COMMAND-LINE CLIENT 17

Install the Windows command-line client from CollabNet.

Visit CollabNet,3 and download the command-line client. Once it’s
downloaded, double-click the file to start the installer. If you’re not
interested in running a Subversion server, uncheck the svnserve and
Apache options during the install.

Install the Mac command-line client from CollabNet.

Visit CollabNet,4 and download its universal binaries for OS X. After you’ve
run the installer, add the following line to ~/.profile:
export PATH=/opt/subversion/bin:$PATH

If you’re using MacPorts, you can use it to install Subversion:
prompt> sudo port install subversion

If you’re using Fink, you can use it to install Subversion:
prompt> sudo fink install svn-client

Install the Ubuntu client.

prompt> sudo apt-get update

prompt> sudo apt-get install subversion

Alternatively, click System > Administration > Synaptic Package Manager
to start Synaptic. Type subversion into the search box to show just
Subversion-related packages. Click the box next to the subversion package,
and then select “Mark for installation.” Choose to mark any other packages
that are required. Click the Apply button to install the Subversion packages.

Related Tasks

• Task 2, Installing a Graphical Client on Windows, on the next page
• Task 3, Installing a Graphical Client on Mac OS X, on page 20
• Task 33, Installing Subversion Server, on page 104

3. http://www.collab.net/downloads/subversion/svn1.5.html
4. http://www.open.collab.net/downloads/community/

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://www.collab.net/downloads/subversion/svn1.5.html
http://www.open.collab.net/downloads/community/
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=17

INSTALLING A GRAPHICAL CLIENT ON WINDOWS 18

2 Installing a Graphical Client on
Windows

TortoiseSVN is an excellent Subversion client for Windows that integrates
directly into Windows Explorer. Once Tortoise is installed, you can
right-click anywhere in a Windows Explorer window and get
context-sensitive Subversion options. If you right-click in a directory that
isn’t a Subversion working copy, Tortoise will offer to let you check it out
from a repository. If you right-click a directory that is a working copy,
Tortoise will offer to let you update or commit. If you right-click a file inside
a working copy, Tortoise will offer to show history for the file, and so on.
Throughout the rest of the book, we’ll use a shorthand to denote choosing
Tortoise menu options, rather than showing screenshots all the time. To
indicate that you should right-click to get the context menu and then click
TortoiseSVN and then Show Log, we will use the abbreviation
TortoiseSVN > Show Log.
Tortoise shows its context-sensitive options both immediately on the context
menu and within the TortoiseSVN flyout menu. Tortoise lets you move
frequently used operations from the flyout to the context menu so you can
save yourself a click or two. To do this, choose TortoiseSVN > Settings, and
then select Context Menu. Select the box next to each operation that you’d
like available directly on the context menu.
Tortoise needs a Subversion repository in order to do anything useful. If you
have a repository already set up, you just need to know the repository URL,
and you can get going. If you are trying Subversion for yourself and need to
set up a local repository for testing, see Task 4, Creating a Local Repository,
on page 22.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=18

INSTALLING A GRAPHICAL CLIENT ON WINDOWS 19

Install the Tortoise graphical client.

Visit tortoisesvn.net,5 and download TortoiseSVN. Tortoise is integrated
with Windows Explorer, so you should reboot your system once the installer
finishes.
Once it’s installed, you can right-click inside any Windows Explorer window
to get a context-sensitive TortoiseSVN menu.

Related Tasks

• Task 1, Installing a Command-Line Client, on page 16
• Task 33, Installing Subversion Server, on page 104

5. http://tortoisesvn.net/downloads

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://tortoisesvn.net/downloads
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=19

INSTALLING A GRAPHICAL CLIENT ON MAC OS X 20

3 Installing a Graphical Client on Mac
OS X

Cornerstone is one of several Subversion clients available for the Mac. It has
a nice, clean interface and a similar feel to other OS X applications.
Cornerstone is commercial software, so you need to buy a license to use it
longer than its free 14-day trial period.
The Cornerstone window has several sections. Along the top is a button bar
with icons for the most common Subversion operations. To the left is a
column containing the working copy source list and the repository source
list. In the center is the main working window, which can show a working
copy browser, a commit view, and a range of other information depending on
what you currently have selected. To the right is the inspector, which shows
more detail about the currently selected item.
If you already know the URL for the repository you want to access, click the
Add Repository... button or click the small + button at the top of the
repository source list. Most repositories will be either HTTP or SVN Server;
ask your administrator if you’re not sure. When adding a repository, it’s best
to omit the trunk directory from the end of the URL so that you can see the
top-level directories and work with them.
If you don’t know the URL for your repository, you should ask the person in
charge of your project. If that person is you, use the instructions in Task 5,
Creating an Empty Project, on page 24 to set up your project. If you’d like to
set up a local repository to get going quickly, see Task 4, Creating a Local
Repository, on page 22.
Adding a repository to the repository source list doesn’t actually copy any
files to your computer; we’ll do that in Task 7, Checking Out a Working
Copy, on page 32. The rest of the Cornerstone examples in this book assume
you have added the Subversion repository for your project.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=20

INSTALLING A GRAPHICAL CLIENT ON MAC OS X 21

Install the Cornerstone graphical client.

Visit the Cornerstone website,6 and download Cornerstone. Double-click the
disk image, and drag the Cornerstone application into your Applications

folder.
When running Cornerstone, you’ll be greeted with the main window, as
shown here:

Related Tasks

• Task 1, Installing a Command-Line Client, on page 16
• Task 33, Installing Subversion Server, on page 104

6. http://www.zennaware.com/cornerstone/

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://www.zennaware.com/cornerstone/
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=21

CREATING A LOCAL REPOSITORY 22

4 Creating a Local Repository

Most people using Subversion don’t need to worry about creating or
maintaining a repository since it’s an administrative task usually performed
by a server administrator or Unix guru. If you don’t have access to one of
these people or if you’d like to experiment with your own repository, you
can use what’s called a local repository.
A local repository needs to live on your hard drive somewhere. For
Windows, this might be a dedicated directory on the C: drive; for Unix and
Mac OS X, it’s probably somewhere in your home directory. Once you have
created an empty directory, you need to tell Subversion to initialize a
repository in that directory. Command-line users should use the svnadmin

command to achieve this. Tortoise users should right-click the directory to
initialize a repository. Cornerstone users should use the Cornerstone GUI to
create the repository.
Once you have initialized the repository, you can start using it, but you’ll
need to tell Subversion where to find the repository. This is where the
repository base URL is needed. The base URL for a local repository always
starts with file:// and ends with the path within the file system to get to your
repository directory.
You can turn a local repository into a networked repository by running a
Subversion server and pointing it at the repository directory. You can find
more details in Task 33, Installing Subversion Server, on page 104.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=22

CREATING A LOCAL REPOSITORY 23

Create a base directory for the repository, and then initialize it.

prompt> mkdir -p ~/svn/repos

prompt> svnadmin create ~/svn/repos

The base URL for your local repository is file:///home/myuser/svn/repos.

Create a local repository using Tortoise.

Using Windows Explorer, create an empty directory for your repository.
Something such as C:\Subversion\Repos will work.
Right-click inside the new directory, and choose TortoiseSVN > Create
repository here.
The base URL for your local repository is file:///C:/Subversion/Repos.

Create a local repository using Cornerstone.

Choose File > Add Repository..., or click the plus icon in the repository
source list.
Select the File Repository button at the top, and click Create a New
Repository. Click the Where drop-down, and choose the folder in which you
want to create your repository. Usually a dedicated svn directory within your
home directory will work.
Enter a repository name in the “Create as” box. This is the actual directory
where your new repository will be stored.
Click the Compatibility drop-down, and choose 1.6. Finally, click the Add
button to create the local repository.
The base URL for your local repository is file:///Users/myuser/svn/repos.

Related Tasks

• Task 34, Creating a Repository, on page 106
• Task 5, Creating an Empty Project, on the following page
• Task 36, Using Third-Party Subversion Hosting, on page 110

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=23

CREATING AN EMPTY PROJECT 24

5 Creating an Empty Project

Most Subversion users won’t often need to create a project—that’s usually
done by a systems administrator or a third-party hosting company. If the
project is already set up and you know the URL, you can jump to Task 7,
Checking Out a Working Copy, on page 32.
Subversion uses directories as its basic unit of organization, dividing the
repository into different projects. By convention, all Subversion projects
have trunk, tags, and branches directories directly within the project’s root
directory. If you had two projects, Kithara and Sesame, you would end up
with the following directory structure:

• /Kithara/trunk

• /Kithara/tags

• /Kithara/branches

• /Sesame/trunk

• /Sesame/tags

• /Sesame/branches

The trunk directory is where all the main development action happens and is
usually the directory you will check out if you want to work on the project.
Remember to specify the trunk when checking out; otherwise, you’ll get the
trunk, all the tags, and all the branches! This could be quite a lot of stuff and
usually isn’t what you want.
The tags directory is used to store named snapshots of the project. For
example, when creating a production release, the team will tag the code that
goes into the release. In the future this can help you re-create the code that
was shipped so that the team can find bugs and fix problems.
The branches directory is used when you want to pursue different lines of
development. A good example would be creating a branch for a production
release. Development on the branch can focus on producing a stable release,
while the trunk can continue to be used to develop new features.
Although you can store multiple projects within a single Subversion
repository, some people use a different repository for each project. This
allows some increased flexibility, for example having different sets of users
or a different backup schedule between projects, but at the cost of extra
administration overhead because each repository needs to be configured and
backed up individually. If you are using a repository-per-project style for
managing your Subversion projects, the trunk, tags, and branches

directories will be at the root of each project’s repository.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=24

CREATING AN EMPTY PROJECT 25

Create a base directory for the project.

If you are sharing a single repository between multiple projects, create a
directory within the repository for your new project.
prompt> svn mkdir -m "Make base directory" \

http://svn.mycompany.com/myproject

Create a repository for the project.

If you are using a separate repository for each project, follow the steps in
Task 34, Creating a Repository, on page 106 to create a repository for your
project.

Create trunk, tags, and branches directories.

prompt> svn mkdir -m "Initial setup" \

http://svn.mycompany.com/myproject/trunk

prompt> svn mkdir -m "Initial setup" \

http://svn.mycompany.com/myproject/tags

prompt> svn mkdir -m "Initial setup" \

http://svn.mycompany.com/myproject/branches

Use Tortoise to create directories.

Right-click inside any Explorer window, and choose TortoiseSVN >
Repo-browser. Enter the URL for your repository, for example http://svn.
mycompany.com/. Tortoise will show you a repository browser where you
can manipulate your repository. Right-click, and choose “Create folder” as
necessary to create all the directories you need for your project.

Use Cornerstone to create a project.

Select your repository from the repository source list. Cornerstone will show
its repository browser in the main window. Ctrl+click the main window, and
choose “New folder in MyRepo....” Enter a name for the project, and select
the box to create top-level directories for the project. Enter a log message
describing your change, and then click Continue to create your project.

Related Tasks

• Task 34, Creating a Repository, on page 106
• Task 36, Using Third-Party Subversion Hosting, on page 110

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://svn.mycompany.com/
http://svn.mycompany.com/
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=25

CREATING A PROJECT FROM AN EXISTING SOURCE TREE 26

6 Creating a Project from an Existing
Source Tree

Often when creating a project in version control, you will already have some
files that are the starting point for the project. This is especially true if you
are starting to use Subversion on a project that didn’t previously have
version control or you are moving from another version control system.
Even if you have done only an afternoon’s work on a new project, you are
likely to have a local directory that represents a good starting point for the
project. Subversion’s import functionality will create a project inside your
repository using your local directory and its contents. Once imported, a copy
of your files will be safely stored on the Subversion server.
Before importing anything, you should make sure you have cleaned up any
temporary files or other garbage that might be lying around. Most build tools
and IDEs have an option to “clean” your project—it’s worth doing this and
generally having a look around to make sure you only import the stuff you
really want. If you accidentally import a file that you don’t want, you can
delete it from the repository, but because Subversion stores the history of all
the files it has ever known about, that file will still be in the repository taking
up space. This isn’t a big deal for small files, but if you have large binaries
such as debugging symbols, you really should clean them up before doing an
import.
Doing an svn import or using one of the GUI tools grabs an entire directory
full of files and checks it into your Subversion repository in one fell swoop.
As long as the repository is valid, Subversion will create any directories it
needs along the way. If you haven’t yet created a trunk folder, for example,
Subversion will create it for you.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=26

CREATING A PROJECT FROM AN EXISTING SOURCE TREE 27

Clean up your existing source tree.

Delete any temporary files or build artifacts from your source directory. Your
IDE might have a Clean Up option, or if you’re using a command-line build
tool, you should runmake clean.7

Check for hidden files or directories, such as .cvs administrative directories
from the CVS source control system. Remove anything that you don’t want
imported into the new Subversion project.

Import the whole tree to your project directory.

prompt> cd work/myproject-to-import

prompt> svn import -m "Initial import" \

http://svn.mycompany.com/myproject/trunk

Import the whole tree using Tortoise.

Using Windows Explorer, right-click the directory you want to import, and
choose TortoiseSVN > Import.... Enter the repository URL for your project
(make sure to include the trunk directory at the end of the URL), and enter a
message describing what you’re importing. Click OK to complete the import.

Import the whole tree using Cornerstone.

Select your repository from the repository source list. Ctrl+click in the base
of the repository browser, and choose Import....
In the file dialog box, browse to the directory you want to import, select it,
and click the Open button. In the Import As text box, entermyproject/trunk

as the directory to import to. Click Import, enter a log message, and
Cornerstone will import your files.
Use the repository browser to navigate to your newly imported trunk

directory. Create tags and branches directories next to the trunk.

Related Tasks

• Task 5, Creating an Empty Project, on page 24

7. Substitute the build tool of your choice, such as ant, nant,maven,msbuild, or rake.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=27

Part II

Working with Subversion

Download from Wow! eBook <www.wowebook.com>

WORKING WITH SUBVERSION 29

Now that we have Subversion installed and a repository set up, we

can begin doing useful work. While Subversion is designed to enable

team collaboration, you can also use it individually. If you are pro-

gramming or authoring on your own, the diff, history, and commit

tools can help you organize your work. You can also use Subversion

as a kind of safe “backup” copy for your files.

In this section, you’ll see how to get a working copy of the files from

Subversion. After you make changes to your files, you commit the

changes to the repository. We’ll also cover renaming and moving

files and directories.

In this section and for the rest of the book, we’ll be using an exam-

ple project called mBench. mBench is a simple benchmarking tool

for MongoDB, one of a new generation of nonrelational databases

(sometimes known as “NoSQL” databases). Mongo is a document-

oriented database with very different performance and reliability

characteristics than a traditional SQL database. Before using

Mongo in production, we’d like to make sure it meets our needs

for speed and reliability. mBench will contain Java code to exercise

Mongo, documentation detailing things we find out about how to

best use Mongo, and other artifacts such as performance testing

results.

The complete source code for mBench is available as part of the

code download for this book. The code, errata, and forums are

available from the Pragmatic Bookshelf at http://pragprog.com/titles/pg_
svn. For all the tasks involving mBench, we assume that it’s available

from a repository at http://svn.mycompany.com/mbench. This URL isn’t real,

so you should substitute your own repository URL when working with

the examples.

Covered in this part:

• To edit files stored in Subversion, you need to first get a copy

of the files on your machine. Task 7, Checking Out a Working

Copy , on page 32 shows you how.

• Task 8, Seeing What You’ve Changed, on page 34 covers how

Subversion shows the edits you have made to files. Task 9, See-

ing What You’ve Changed Using Tortoise, on page 36 and

Task 10, Seeing What You’ve Changed Using Cornerstone, on

page 38 show you how to examine changes using GUI tools.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/pg_svn
http://pragprog.com/titles/pg_svn
http://svn.mycompany.com/mbench
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=29

WORKING WITH SUBVERSION 30

• Once you have made your changes, you need to commit

them to the repository. I describe the commit process in Task

11, Committing Changes, on page 40.

• Task 12, Adding Files and Directories, on page 42 covers how

to add new items to your repository, while Task 13, Removing

Files and Directories, on page 44 shows how to remove items.

• Renaming and moving items is covered in Task 14, Moving and

Renaming Files and Directories, on page 46.

• If you make a local change that you’d like to undo, follow the

instructions in Task 15, Reverting Working Copy Changes, on

page 48.

• Subversion allows you to ignore temporary files; Task 16, Ignor-

ing Files, on page 50 shows you how.

Let’s get started by checking out a fresh working copy.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=30

WORKING WITH SUBVERSION 31

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=31

CHECKING OUT A WORKING COPY 32

7 Checking Out a Working Copy

You need to check out the files from your repository before you can access
them on your computer. The files will be stored in a local directory called a
working copy. Your Subversion client will talk to the server and copy the
latest files onto your computer ready to edit. You will be asked for a
username and password if your repository is secured.
Subversion projects are usually stored in a trunk directory on the server; this
will be the case if you have followed the instructions in this book for
creating projects. You need to specify this trunk directory as part of the
repository URL from which you are checking out. If you forget, you’ll end
up checking out everything in the repository—branches, tags, everything—
and this could end up being much more than you really wanted. After
specifying the project’s trunk directory, we tell Subversion that we want to
check out into a local directory called mbench. If you don’t include this
information, Subversion will check out into a folder called trunk, which
probably isn’t what you want and might be quite confusing if you’re working
on more than one project!
After Subversion has copied files from the repository to your computer,
they’ll be saved in a directory known as a working copy. Inside a working
copy, Subversion remembers where all the files came from, knows what
revision they were when they came from the server, and can detect any
changes you make to the files. Subversion uses hidden .svn directories to
track all its bookkeeping information. Don’t alter, delete, or otherwise mess
with these directories because you could corrupt your working copy.
You need to check out from Subversion only the first time you want to work
with a particular project. Once you have a working copy, you can always
update it to get the latest files. We describe the update process in more detail
in Task 17, Updating to the Latest Revision, on page 56.
After you check out a working copy using Cornerstone, it will automatically
add the working copy as an entry in your working copy sources list. You’ll
need to use this entry when manipulating your working copy for the rest of
the tasks in this book.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=32

CHECKING OUT A WORKING COPY 33

Check out into a local working copy.

prompt> cd ~/work

prompt> svn checkout http://svn.mycompany.com/mbench/trunk mbench

Check out using Tortoise.

Using Windows Explorer, navigate to your C:\Work directory. Right-click
inside the directory, and choose SVN Checkout.... Then fill in the dialog box
as follows:

Check out using Cornerstone.

Select your repository in the repository source list, and then use the
repository browser to navigate to the trunk directory. Ctrl+click “trunk,” and
choose Check Out Working Copy.... Specify where you’d like to save the
new working copy, and click Check Out.

Related Tasks

• Task 5, Creating an Empty Project, on page 24
• Task 36, Using Third-Party Subversion Hosting, on page 110

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=33

SEEING WHAT YOU’VE CHANGED 34

8 Seeing What You’ve Changed

Subversion keeps track of files in your working copy and will detect any
changes you make. You can see which files or directories you’ve changed
and even see exactly what has changed within each file. As a programmer,
it’s easy to get confused about what changes you have made once you’re
halfway through a feature, and Subversion can help keep you on track.
The status command tells Subversion to scan all the files in your working
copy to see whether they’ve changed. Subversion uses some tricks to make
this process faster, but it still has to look at each file to see whether it has
changed. The scan might take a while if you have lots of files in your
working copy. If you know that you’ve been working in only one particular
directory, you can ask Subversion to tell you the status of that directory
instead of the whole project, which should speed things up.
Subversion marks each file with a letter indicating its status:
A Added in your working copy
C Conflicted, because of an update or merge
D Deleted in your working copy
G Merged with changes from the repository
I Ignored in your working copy
M Modified in your working copy
R Replaced in your working copy
? Not under version control
! Missing from your working copy (removed by non-svn command) or

incomplete
The diff command asks Subversion to print out a “unified diff” for each of
the files you have changed. This displays the difference between the file as
you checked it out and the file after you made your changes. A plus indicates
that you have added some new text to the file; a minus means you’ve
removed some text. If you have changed several lines, you might see a group
of pluses and minuses indicating that a whole “block” of your file has
changed.
The command-line client isn’t great at showing diffs—not surprising when a
text interface is all it has to work with. The graphical Subversion clients do a
much better job displaying diffs, as we’ll see in the next tasks.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=34

SEEING WHAT YOU’VE CHANGED 35

See which files have changed in your working copy.

mbench> svn status

M .idea/workspace.xml

M src/mbench.java

See how your files have changed.

prompt> svn diff src/

Index: src/mbench.java

==

--- src/mbench.java (revision 6)

+++ src/mbench.java (working copy)

@@ -1,10 +1,13 @@

public class mbench {

- public static int main(String[] args) {

+ public static void main(String[] args) {

if(args.length != 3) {

usage();

- return -1;

+ return;

}

- return 0;

+

+ String dbHost = args[0];

+ long docCount = Long.parseLong(args[1]);

+ long runTime = Integer.parseInt(args[2]);

}

private static void usage() {

Related Tasks

• Task 21, Viewing the Log, on page 66
• Task 9, Seeing What You’ve Changed Using Tortoise, on the next page
• Task 10, Seeing What You’ve Changed Using Cornerstone, on page 38
• Task 15, Reverting Working Copy Changes, on page 48

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=35

SEEING WHAT YOU’VE CHANGED USING TORTOISE 36

9 Seeing What You’ve Changed Using
Tortoise

The Tortoise Check for modifications... command can be used anywhere
inside a working copy and will show any changes you have made. Similar to
the command-line client, it will do its work faster if you know you’re only
interested in changes in a particular directory. Each file listed is color coded
as well as having its state listed in the “text status” column.
There are a number of checkboxes that control how Tortoise shows changes:
Show unversioned files

Shows any new files that haven’t yet been added to Subversion. It’s a
good idea to keep this option selected so you don’t forget to add new
files when committing to the repository.

Show unmodified files
Useful only on really small projects, this will show files that haven’t
been modified.

Show ignored files
Not usually very useful, this will show any files that Subversion is
currently ignoring. For more information on ignored files, see Task
16, Ignoring Files, on page 50.

Show items in externals
If you are using Subversion externals to pull items from another
repository URL into your working copy, this option will show any
changes to those files. See Task 44, Using Externals, on page 128 for
more information on externals. You should usually keep this option
selected.

Show properties
Shows changes to file properties. You can usually keep this option
deselected unless you’re specifically changing file properties.

You can right-click changed files to see a context-sensitive menu for each
item. You can view the recent history, undo your changes, open the file, and
so on. If you double-click a changed file or right-click and choose “Compare
with base,” Tortoise will pop up a graphical diff window showing the
changes. By default Tortoise uses TortoiseMerge to show diffs, but you can
configure it to use your favorite diff tool.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=36

SEEING WHAT YOU’VE CHANGED USING TORTOISE 37

See which files have changed in your working copy.

Right-click the base directory of your working copy, and choose
TortoiseSVN > Check for modifications.... Tortoise will show a window like
this:

See how your files have changed.

In the Tortoise modified files window, double-click a file that you’ve
changed. Tortoise will pop open a diff window showing the changes to that
file.

Related Tasks

• Task 21, Viewing the Log, on page 66
• Task 15, Reverting Working Copy Changes, on page 48

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=37

SEEING WHAT YOU’VE CHANGED USING CORNERSTONE 38

10 Seeing What You’ve Changed Using
Cornerstone

When you select a working copy from the working copy sources list, Corner-
stone automatically checks for changes and updates its file list accordingly.
By default Cornerstone will show all the files in your working copy, which
might be too much to look through for anything beyond a small project.
Select the Changed view to show only files that have changed or are new.
Modified files are shown with a little M icon to the right of their name. New
files are shown with a yellow question-mark icon, added files are shown with
a green A icon, and deleted files are shown with a red D icon.
To see exactly what has changed in a particular file, select it and click
Compare with BASE on the menu bar. This shows the changes that you have
made since you last updated the file from the repository. You can also use
Compare with HEAD to show the differences between your version of the
file and the latest one in the repository.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=38

SEEING WHAT YOU’VE CHANGED USING CORNERSTONE 39

See which files have changed in your working copy.

Select your working copy from the working copy sources list. Cornerstone
will show you the working copy browser in the main window. Click the
Changed button at the top of the browser to show just files that have changes.

See how your files have changed.

Select a changed file, and click the Compare with BASE button at the
bottom of the working copy browser. Cornerstone will use its built-in
graphical diff tool to show you how the file has changed:

Related Tasks

• Task 21, Viewing the Log, on page 66
• Task 15, Reverting Working Copy Changes, on page 48

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=39

COMMITTING CHANGES 40

11 Committing Changes

Once you are happy with the changes you have made, you should commit
them back into the repository. Changes committed into the repository are
available to everyone else on your project and are stored securely on your
Subversion server. Committing changes is sometimes also known as
checking in to the repository; these two terms mean the same thing and can
be used interchangeably.
Any time you commit a change into the repository, Subversion will ask for a
commit message. Your changes, along with the commit message, then
become a revision within the Subversion repository. You should always try
to make your commit messages meaningful—they can be used later by
someone else (or more often yourself!) to figure out the intent of the
changes. It’s always better to describe why you made the changes instead of
what the changes are. Subversion can always show the actual content of the
change; it can’t help someone understand the intent of the change.
If you are working on a software project, you should always update from the
repository and run a build before committing changes (see Task 17,
Updating to the Latest Revision, on page 56). This ensures that your changes
will work with the latest code from the repository and that you haven’t
broken anything. Your colleagues will thank you for being so conscientious.
If you don’t want to commit all the changes from your working copy, you
can tell Subversion which files or directories to commit by specifying them
on the command line or choosing them in your GUI. Be extra careful when
doing this, however. If you are a programmer working on code and you
check in only half your changes, it’s likely what you checked in will not
work for someone else.
When using Tortoise, the commit window acts a little like the “Check for
modifications...” window. You can type a commit message into the top
portion and see all the changed files in the lower portion. Double-clicking
any changed file allows you to review the diff. Unchecking a file will cause it
not to be committed.
Committing using Cornerstone shows a window listing the changed files and
asking for a commit message. If you want to review exactly what you’ve
changed, double-click a modified file to show an exact graphical diff.
Unchecking a file will stop Cornerstone from committing it.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=40

COMMITTING CHANGES 41

Commit your changes back into the repository.

mbench> svn commit -m "Now parsing command-line options"

Commit using Tortoise.

Right-click inside the base of your working copy, and choose SVN
Commit.... Tortoise will show a commit window like this:

Commit using Cornerstone.

Select your project from the working copy sources list, and then click the
Commit icon on the menu bar. Cornerstone will prompt you for a commit
message and show a list of modified files; click Commit Changes to finish
your commit.

Related Tasks

• Task 8, Seeing What You’ve Changed, on page 34
• Task 17, Updating to the Latest Revision, on page 56

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=41

ADDING FILES AND DIRECTORIES 42

12 Adding Files and Directories

Subversion will notice new files and directories within your working copy,
but it won’t automatically add them to the repository. Adding items to the
repository is a two-step process; first you tell Subversion you want to add
the items to your working copy, and then you commit your changes to
actually upload the items to the repository.
This two-step process is important. When you create a new file, it won’t be
very useful to anyone else until you add content to the file, but you also need
to remember to add the file to Subversion. If you wait until you finish your
programming task, you might forget to add the file. With Subversion, you
can go ahead and add the file to your working copy right away; this won’t
change anything on the Subversion server, and no one else can see the file
yet, but when you finish your work and commit your changes, the new file
will be uploaded to the repository. This is sometimes called scheduling files
for addition to the repository.
The command-line client will add the files or directories you specify. When
adding a directory, the command-line client will recursively add any files
and directories within the directory you’re adding.
When using Tortoise to add files, if you choose to add a directory, Tortoise
will show you a complete list of the contents of the directory. If there are
files you don’t want to add, just uncheck them before clicking OK.
If you’re using Cornerstone to add a directory, clicking the Add button will
add the directory but not its contents. If you want to add a directory and its
contents, click and hold the Add button, and then choose Add to Working
Copy with Contents.
If you schedule files or directories for addition to the repository but haven’t
actually committed your changes, you can change your mind by reverting
the addition. For more information, see Task 15, Reverting Working Copy
Changes, on page 48.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=42

ADDING FILES AND DIRECTORIES 43

Add new files and directories from your working copy.

mbench> svn add README.txt docs/

mbench> svn commit -m "Adding docs folder for documentation"

Add files using Tortoise.

Using Windows Explorer, navigate to the file or directory you want to add.
Right-click, and choose TortoiseSVN > Add....
Commit your changes by right-clicking the base of your working copy and
choosing SVN Commit....

Add files using Cornerstone.

Select your project from the working copy sources list, and click the
Changed button. Find the new file—it should have a yellow question-mark
icon to its right—and select it. Click the Add button in the bottom toolbar.
Commit your changes by clicking Commit on the top toolbar.

Related Tasks

• Task 8, Seeing What You’ve Changed, on page 34
• Task 11, Committing Changes, on page 40
• Task 15, Reverting Working Copy Changes, on page 48

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=43

REMOVING FILES AND DIRECTORIES 44

13 Removing Files and Directories

Similar to adding items, deleting items from the repository is a two-step
process; first you tell Subversion you want to delete the items from your
working copy, and then you commit your changes to the repository. Until
you commit the change, the delete won’t happen on the server.
As with adding items, this two-step process is important because you are
likely to want to commit your delete along with some changes to other files.
For example, if you’re using an IDE to manage your source code and want to
delete a class, the change consists of both removing the class file and
changing the IDE project file to no longer reference the file. You should
commit both these changes in one go.
When deleting a directory, Subversion will recursively delete any files and
directories within the directory you’re deleting. Subversion won’t actually
remove the directory structure, however, because Subversion still needs to
access its administrative data in the hidden .svn directories. Don’t delete
these directories yourself—once you commit your changes, Subversion will
clean up the empty directory structure. The command-line clients, Tortoise,
and Cornerstone all behave like this, so don’t worry if you see empty
directories lying around after a delete.
If you schedule files or directories for deletion from the repository but
haven’t yet committed your changes, you can change your mind and revert
the delete. Reverting a delete restores the deleted files and directories to your
working copy. For more information, see Task 15, Reverting Working Copy
Changes, on page 48.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=44

REMOVING FILES AND DIRECTORIES 45

Delete files and directories from your working copy.

prompt> svn delete src/app/Widget.cs src/app/utils

prompt> svn commit -m "Deleted Widget class and utils package"

Delete files and directories using Tortoise.

Right-click a file or directory, and choose TortoiseSVN > Delete.
Commit your changes by right-clicking the base of your working copy and
choosing SVN Commit....

Delete files and directories using Cornerstone.

Select your project from the working copy sources list, and click the All
button in the browser. Find the file or directory you want to delete,
Cmd+click the item, and choose Delete....
Select the base of your working copy in the browser, and then click Commit
on the toolbar to commit your changes.

Related Tasks

• Task 8, Seeing What You’ve Changed, on page 34
• Task 11, Committing Changes, on page 40
• Task 15, Reverting Working Copy Changes, on page 48

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=45

MOVING AND RENAMING FILES AND DIRECTORIES 46

14 Moving and Renaming Files and
Directories

Moving and renaming are almost the same within Subversion.8 To rename a
file or directory, you just move it so that it has a new name but is in the same
location. To move a file or directory to a new location, specify the
destination directory. You can also move and rename at the same time by
specifying a renamed file or directory in a new location.
Moving or renaming an item is a two-phase process, similar to adding or
deleting; first you tell Subversion you want to move or rename the items, and
then you commit your changes to the repository.
If you’re looking closely, Subversion tracks a move or rename as an add of
the item with a new name or in a new location and a delete of the old item.
Internally Subversion tracks where the new item came from so you can
follow history across moves and renames.
The Subversion command line acceptsmove,mv, and ren as aliases for
rename.
Tortoise has an excellent interface for moving files and directories once you
discover the “right-drag” feature. Tortoise allows you to move, or move and
rename, in one operation. To right-drag a file, place your mouse pointer over
it, and click and hold the right mouse button. Still holding the right mouse
button, drag the file to its new location, and then let go of the mouse button.
Cornerstone has an intuitive interface for moving files and directories:
simply drag the item to a new position using the working copy browser. As
you drop the item in a new location, Cornerstone will offer to let you change
the name. If you want to keep the same name, just hit Enter, and Cornerstone
will move the item without renaming it.

8. Subversion is heavily influenced by Unix, where there is no rename command—you just
move the item to a new name to rename it.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=46

MOVING AND RENAMING FILES AND DIRECTORIES 47

Rename a file using the command-line client.

prompt> svn mv README.txt 001-README.txt

A 001-README.txt

D README.txt

prompt> svn commit -m "README now shows first in directory"

Move a file using the command-line client.

prompt> svn mv src/app/Widget.cs src/app/util/

prompt> svn commit -m "Moved Widget class into util package"

Rename a file using Tortoise.

Right-click a file or directory, and choose TortoiseSVN > Rename....
Commit your changes by right-clicking the base of your working copy and
choosing SVN Commit....

Move a file using Tortoise.

Using Windows Explorer, right-drag the file to a different location in your
working copy, and choose “SVN Move versioned item(s) here.”
Commit your changes by right-clicking the base of your working copy and
choosing SVN Commit....

Rename a file using Cornerstone.

Using the working copy browser, select the file you want to rename. Wait a
moment, and then click the file again. The filename will become editable;
type a new name for the file, and hit Enter.
Click Commit on the toolbar to commit your changes.

Move a file using Cornerstone.

Using the working copy browser, drag a file to a new location. Cornerstone
will offer to let you rename the file; hit Enter to confirm a new name and
move the file.
Click Commit on the toolbar to commit your changes.

Related Tasks

• Task 8, Seeing What You’ve Changed, on page 34
• Task 11, Committing Changes, on page 40
• Task 15, Reverting Working Copy Changes, on the next page

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=47

REVERTING WORKING COPY CHANGES 48

15 Reverting Working Copy Changes

If you decide that you no longer want some or all the changes you have
made in your working copy, you can revert those changes. The Subversion
client will restore the files as they were when you last checked out or
updated. Doing a revert doesn’t get you the latest changes from the
repository; you need to do an update to get those.
Subversion stores a pristine copy of each file in its hidden .svn

administrative directories so it can do a revert without needing to talk to the
server. This can be useful if you’re editing code on a plane or from home and
cannot get a network connection to the server.
Reverting a copied, moved, or renamed item within Cornerstone does not
delete the newly created copy of the item. These extra files and directories
will show up in the working copy browser with a yellow question-mark icon
next to them. Cmd+click, and choose Delete... to clean up these extra items.
Reverting working copy changes only helps you undo a work in progress. If
you have committed a change and want to undo it, you’ll need to look at
Task 23, Reverting a Committed Revision, on page 70.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=48

REVERTING WORKING COPY CHANGES 49

Revert changes to specific files or directories.

prompt> svn revert Number.txt

prompt> svn revert -R src/util/

Revert all the changes in your working copy.

prompt> cd work/mbench

prompt> svn revert -R .

Revert changes using Tortoise.

Right-click the base directory for your working copy, and choose
TortoiseSVN > Revert.... You’ll see a window similar to the following:

Check the items you want to revert, and click OK.

Revert changes using Cornerstone.

Select your project from the working copy sources list. In the working copy
browser, select the file or directory you want to revert, and click the Revert
button on the toolbar.

Related Tasks

• Task 8, Seeing What You’ve Changed, on page 34
• Task 23, Reverting a Committed Revision, on page 70

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=49

IGNORING FILES 50

16 Ignoring Files

Software development projects are complex beasts. A build tool or IDE will
often create temporary files while you are working on development tasks or
running a build. These temporary files are usually not useful to anyone else
and should not be stored in a Subversion repository. Subversion tries to be
helpful, however, and tells you that it doesn’t know about any file that has
not been added to the repository. These files will show with a question mark
when svn status shows the working copy status and will clutter up the
Tortoise and Cornerstone GUIs.
You can instruct Subversion to ignore certain files or directories by editing
the svn:ignore property on the directory containing the items you want to
ignore. You can find more information on properties in Task 43,Working
with Properties, on page 126. The svn:ignore property is plain text and
simply lists items to ignore, one item on each line. Wildcards are supported,
so, for example, *.tmp will ignore all temporary files.
Once you have altered the svn:ignore property on the directory, you must
commit the property change into the repository in order for other users to
benefit; until you commit, only your working copy is ignoring the specified
items. When other users update their working copies, their Subversion
clients will start to ignore the items as well.
Setting svn:ignore on a directory tells Subversion to ignore particular items
only in that directory. Matching items in subdirectories will not be ignored.
To avoid needing to set svn:ignore on lots of directories, you should set up
your project so that temporary files or binary artifacts are created in one
directory. Developers often choose a build directory in the root of the
working copy. Set svn:ignore to ignore the build directory, and you’re
done—no more temporary files cluttering up Subversion’s status messages.
If you make a change to svn:ignore that you want to undo, simply revert
your working copy changes. Be careful not to revert changes to files,
however, because this is your work in progress! Just revert the change to the
directory.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=50

IGNORING FILES 51

Ignore files and directories using the command-line client.

mbench> svn status

? test

? out

M .idea/workspace.xml

M src/util/populator.java

mbench> svn propedit svn:ignore .

Edit the svn:ignore property so that it lists the test and out directories. Save
and quit your editor.
mbench> svn status

svn status

M .

M .idea/workspace.xml

M src/util/populator.java

mbench> svn commit -N -m "Ignored test and out directories" .

Ignore items using Tortoise.

Right-click the base directory for your working copy, and choose
TortoiseSVN > Check for modifications. Ensure “Show unversioned files” is
checked.
Right-click any file you want to ignore, and choose “Add to ignore list.”
Commit your changes to the repository.

Ignore items using Cornerstone.

Select your project from the working copy sources list. Select the All view,
and navigate to the files you want to ignore. Files that have not yet been
added to your repository are indicated with a yellow question-mark icon.
Ctrl+click each file you want to ignore, and choose Ignore. Commit your
changes to the repository.

Related Tasks

• Task 8, Seeing What You’ve Changed, on page 34
• Task 15, Reverting Working Copy Changes, on page 48

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=51

Part III

Working with a Team

Download from Wow! eBook <www.wowebook.com>

WORKING WITH A TEAM 53

Subversion is primarily a collaboration tool. Although you can use

Subversion on your own, its real power comes when it enables a

large team to work together on a single project. This part of the

book describes how to collaborate with other members of your

team as you all make changes to files stored in the repository.

For programming teams, a typical development session will involve

updating to the latest version of the code, making changes as they

complete development tasks, and finally committing changes to

the repository. Many teams accelerate their development cycle to

include multiple “update, change, commit” cycles throughout the

day. This is definitely a good way to keep in sync with other people

working on the project.

Subversion’s collaboration model doesn’t try to prevent two people

from changing the same file at the same time. Usually when devel-

opers are working on different features, they’re mostly working on

completely different sets of files. If a team does happen to have

two people working on the same file, you’ll usually find that they’re

working on different sections of the file. Subversion can automat-

ically merge these kinds of changes. More rarely, two developers

will change exactly the same part of a file, and Subversion cannot

automatically reconcile the two sets of changes. This is known as a

conflict . Subversion 1.6 also tracks tree conflicts, which occur when

users change files or directories in an incompatible way, such as

one user renaming a file while the other user changes its contents.

Subversion includes tools to help you resolve these conflicts, and we

cover them in this part of the book.

Subversion’s copy-modify-merge model is also known as optimistic

locking. The alternate strategy, pessimistic locking, can be enabled

for selected files. Task 29, Enabling File Locking, on page 92, de-

scribes this in more detail. Encountering lots of conflicts usually indi-

cates that something is going wrong on your project. It might be

that developers aren’t talking to each other often enough and are

doing overlapping work (fixing the same bug, for example). It might

also indicate that your code includes files that need to be edited

often—restructuring to have smaller files or classes may help.

Covered in this part:

• Staying in sync with your team is covered in Task 17, Updating

to the Latest Revision, on page 56.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=53

WORKING WITH A TEAM 54

• If multiple people change the same part of a file, Subversion

will report a conflict. Task 18, Handling Conflicts, on page 58

shows you how to resolve conflicts.

• Graphical tools give you a distinct advantage when resolving

conflicts. Task 19, Handling Conflicts Using Tortoise, on page 60

and Task 20, Handling Conflicts Using Cornerstone, on page 62

describe graphical conflict-resolution in detail.

Let’s start off by keeping in sync with the rest of the team.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=54

WORKING WITH A TEAM 55

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=55

UPDATING TO THE LATEST REVISION 56

17 Updating to the Latest Revision

If you have multiple people working on a project, they will all be making
changes and committing to the repository. Doing an update gets these
changes from the repository and incorporates them into your working copy.
It’s a good idea to update fairly frequently; if you haven’t updated for a
while, then fixing any conflicts will take more time. You’ll learn how to deal
with conflicts in Task 18, Handling Conflicts, on page 58. If you have made
changes in your working copy, it’s still safe to do an update—Subversion
will incorporate the changes from the repository with your changes; it won’t
just overwrite or throw away all your hard work!
During the update process, Subversion will let you know what’s being
changed in your working copy. It will show files that have been added or
removed, files that have been updated, and files whose new contents have
been merged with your local changes.
TortoiseSVN includes a “Show log...” button once the update completes,
allowing you to easily see the log messages for recent changes. This can be
especially useful if the update has caused a conflict.
Cornerstone is fairly quiet during an update. There is a small activity
indicator at the bottom left of the window that shows an update is in
progress. To see everything that Cornerstone has done recently, click the
Transcript button on the bottom toolbar.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=56

UPDATING TO THE LATEST REVISION 57

Update your working copy to the latest revision.

prompt> cd ~/work/mbench

prompt> svn update

Update your working copy using Tortoise.

Right-click the base directory in your working copy, and choose SVN
Update. Tortoise will open a status window and update your working copy.

Update your working copy using Cornerstone.

Select your project in the working copy sources list, and then click Update
on the toolbar.

Related Tasks

• Task 18, Handling Conflicts, on the following page
• Task 21, Viewing the Log, on page 66

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=57

HANDLING CONFLICTS 58

18 Handling Conflicts

When two people change the same part of the same file, Subversion cannot
automatically merge the changes. Conflicts are actually quite rare because
they indicate that two people were working on exactly the same thing.
Sometimes two developers will try to fix the same bug and end up changing
the same file and cause a conflict or will be working on a common data
structure and both change it. Being on the receiving end of a merge conflict
is usually an indicator that you should be talking more often with your
colleagues.
If Alice and Bob are both working on the same part of the same file and
Alice checks in first, she won’t notice a problem. When Bob comes to check
in, he’ll be told that his version of the file is out-of-date; he needs to do an
update before he can commit. When he updates, Subversion will try to
merge his changes with Alice’s changes. Since both sets of changes are in
the same part of the file, Subversion tells Bob that there is a conflict.
The Subversion command-line client provides various options for resolving
conflicts. For each conflicted file, Subversion asks you to choose from the
following commands:
p Postpone fixing the conflict, and save the file with embedded conflict

markers. You can find the conflicts by looking for sequences of < < <
and > > > characters. Pick the text you’d like (your version, indicated
by the text .mine; the version from the repository, indicated by a
revision number; or a combination of the two), and then save the file.

df Show a full diff of all the changes to the merged file. This shows all
your changes to the file plus any conflict markers that would be
inserted to show conflicts.

e Edit the merged file using an editor. The file will contain conflict
markers so you can find the conflicts and resolve them.

r Mark the conflict as resolved, accepting any edits you have made.
mf “My file”—ignore the changes from the repository, and use your

version of the file in full.
tf “Their file”—ignore your changes, and use the version of the file from

the repository in full.
l Launch an external merge tool9 to merge the changes.
9. Use the environment variable SVN_MERGE to tell Subversion which merge tool you’d like
to use.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=58

HANDLING CONFLICTS 59

Use the command-line Subversion client to update and merge

files.

During an svn update, Subversion could discover conflicting changes and
need your help to resolve the conflict.
prompt> svn update

Conflict discovered in 'src/mbench.java'.

Select: (p) postpone, (df) diff-full, (e) edit,

(h) help for more options:

Enter commands (detailed on the opposite page) to merge the conflicting
changes. You can keep editing the files until you are happy.

Mark conflicts as resolved.

For each file that was conflicted, use svn resolved to tell Subversion that
you’ve fixed the problem.
prompt> svn resolved src/mbench.java

Related Tasks

• Task 8, Seeing What You’ve Changed, on page 34
• Task 17, Updating to the Latest Revision, on page 56
• Task 19, Handling Conflicts Using Tortoise, on the following page
• Task 20, Handling Conflicts Using Cornerstone, on page 62

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=59

HANDLING CONFLICTS USING TORTOISE 60

19 Handling Conflicts Using Tortoise

During an update, Tortoise will keep track of any files that have conflicting
changes, coloring them red in the update window. At the very end of the
update log will be a message reminding you that some files were conflicted
and that you should fix the problem. You can fix conflicts later by
right-clicking files in Windows Explorer and choosing TortoiseSVN > Edit
conflicts, but it’s usually easiest to do it from the update window by
double-clicking each conflicted file.
The TortoiseMerge window is split into three sections. The top-left pane
shows “their” changes, that is, the changes someone else made and
committed to the repository. The top-right pane shows “my” changes, that is,
the changes we made in our working copy. The bottom pane shows the result
from the merge.
In the example screenshot, we can see that both sets of changes have
added diagnostic output when the mBench worker finishes testing Mongo. In
the repository version, the source code shows the exact number of reads and
writes performed. In our version, we simply state that the test is complete.
Subversion doesn’t know which block of code is correct, so TortoiseMerge
shows a block of ??? characters as the merge result. We might decide the
repository version is the correct one; right-click the block in the top-left pane,
and choose “Use this text block.” TortoiseMerge updates the output pane
to show the result as you select blocks from the two conflicting change sets.
Use the red up and down arrows toward the top of the TortoiseMerge
window to quickly move to the next (or previous) conflict. Once you have
resolved all the conflicts, click the green tick icon on the menu bar to mark
the file resolved.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=60

HANDLING CONFLICTS USING TORTOISE 61

Update from the repository where there is a conflict.

Right-click the base directory in your working copy, and choose SVN
Update. If there is a conflict, Tortoise will show conflicted files in red and
warn you that there was a conflict.

Use the TortoiseMerge tool to resolve conflicts.

For each conflicted file, double-click it to launch TortoiseMerge.

Related Tasks

• Task 8, Seeing What You’ve Changed, on page 34
• Task 17, Updating to the Latest Revision, on page 56
• Task 18, Handling Conflicts, on page 58

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=61

HANDLING CONFLICTS USING CORNERSTONE 62

20 Handling Conflicts Using Cornerstone

When you update from the repository, Cornerstone will track any files where
Subversion encounters a conflict. Unfortunately, Cornerstone is not very
verbose in telling you that files are conflicted; you need to select the
Modified or Conflicted view in the working copy browser in order to easily
see conflicted files.
Cornerstone includes simple conflict resolution strategies. In most cases, you
should edit the conflicted file to remove the <<< and >>> conflict markers.
These markers are labeled so that you can see the difference between your
version of the file and the repository version. For each conflict, determine
what the correct code block should be, and edit the file to reflect your choice.
Once you are satisfied that the conflicts are resolved, use the Resolved
button to mark the file resolved.
In some cases, you will know that all conflicts in a file should be resolved by
using the repository changes or by using your working copy changes. In this
case, select the file in the working copy browser, and then click and hold the
Resolve button on the bottom toolbar. Choose Resolve to Latest in
Repository to have repository changes chosen in favor of your local changes.
Choose Resolve to My Changes to have local changes chosen in favor of
repository changes.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=62

HANDLING CONFLICTS USING CORNERSTONE 63

Update from the repository where there is a conflict.

Select your project from the working copy sources list, and click Update on
the toolbar. Click Changed to show just files that have changed and might
have a conflict. If any of your files have a red C icon next to them, you have
a conflict.

Edit the file to resolve conflicts.

Double-click the conflicted file to launch the default editor for that file. Edit
the file to remove Subversion’s conflict markers.

Mark the conflict as resolved.

Select the conflicted file using the working copy browser. Click the Resolved
button on the bottom toolbar to mark the conflict resolved.

Related Tasks

• Task 8, Seeing What You’ve Changed, on page 34
• Task 17, Updating to the Latest Revision, on page 56
• Task 18, Handling Conflicts, on page 58

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=63

Part IV

Using the History

Download from Wow! eBook <www.wowebook.com>

USING THE HISTORY 65

Version control tools like Subversion allow you to do more than sim-

ply keep your files in a safe place and collaborate with your team.

Subversion stores every revision of every file that was ever commit-

ted to the repository. You can think of this detailed history as a kind

of time machine—you can go back to any point in history if some-

thing goes wrong.

More than just being able to go back to a specific point in time

and do things differently, Subversion’s powerful history functions let

you understand how things got to be the way they are today. Often

you’ll need to do some detective work to figure out why or when a

certain bug was introduced, who last made a particular change, or

which people were involved in developing certain functionality.

Subversion’s history functions all depend on a key piece of informa-

tion: the log messages associated with each revision. It’s all too easy

to leave the message blank or type something simple like “fixed a

bug,” but using a good log message will make things much easier

for others doing detective work later.

Subversion already stores the textual changes that were made, so

there’s not much point writing a message that says “added BP net-

work protocol.” Instead, you should use the log message to indicate

why you made the change:

Network connections to our Mars rover won’t work using regular TCP

networking because, even at the speed of light, signals can take

twenty minutes to reach the rover. Bundle Protocol solves this prob-

lem by allowing much higher-latency network connections.

If the change being made is fixing a bug, you should include the

bug identifier (number, code name) in the commit message. The

other information about the bug—description, how to reproduce,

and so on—doesn’t need to be repeated.

Covered in this part:

• Browsing recent repository activity is covered in Task 21, View-

ing the Log, on the following page.

• Examining exactly how a portion of a file got to its current

state is covered in Task 22, Detective Work with svn blame,

on page 68.

• Sometimes you’ll want to undo a change that has already

been committed to the repository. Task 23, Reverting a Com-

mitted Revision, on page 70 shows how to do this.

Let’s start by looking at recent repository history.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=65

VIEWING THE LOG 66

21 Viewing the Log

When you are working as part of a project team, many people will be
making changes and committing them to the repository. Depending on the
size of your team and how often they commit, there might be dozens of
changes every day. If you have been away from the project for a while, or
even as part of your daily routine, you might want to check what has been
committed recently.
Subversion’s log stores every change ever committed to the repository. To
see recent changes, you can ask Subversion to show the log for your working
copy. Subversion shows changes in reverse chronological order, starting with
the most recent change and then working backward. This might be a long list
of changes—for the command-line client you should pipe the output into a
pager program such as less. The graphical clients usually show just the last
100 or so changes unless you specifically ask for more.
Subversion will show log entries only for revisions that have been applied to
your working copy. If you haven’t updated your working copy for a while
and ask to see the log, you won’t see any recent changes that have been
made by other people. To see those log messages, you’ll need to update your
working copy first.
Both Tortoise and Cornerstone provide easy ways to browse the log and
examine changes in detail. You can scroll through the various log messages
looking for something interesting and then click individual changed files and
show the exact differences when that revision was committed. The first time
you show the log, Cornerstone will offer to cache the log to speed up future
requests. You should allow it to do so if you have a fairly fast connection to
your Subversion server.
You can also show the log for a repository URL instead of a working copy.
The command-line client works as follows:
prompt> svn log http://svn.mycompany.com/mbench/trunk

To show the log for a repository URL using TortoiseSVN, start the Repo
Browser, and enter the URL for your repository. Right-click the base
directory for your project, and choose Show Log.
To show the log for a repository using Cornerstone, select a repository from
the repository source list, and then click the Log button to show the log.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=66

VIEWING THE LOG 67

Show log entries for your working copy.

prompt> cd ~/work/myproject

prompt> svn log | less

Show the log using Tortoise.

Right-click at the base of your working copy, and choose TortoiseSVN >
Show Log. Select any log entry to see all the files that were changed, and
double-click any file to show the diff for that file.

Show the log using Cornerstone.

Select your project from the working copy sources list, and then click the
Log button on the bottom toolbar. Cornerstone will show a list of revisions
including their log message and when the change was made. Click the
expander triangle next to Changes to show the full list of files that were
changed, and double-click any file to show the diff for that file.

Related Tasks

• Task 22, Detective Work with svn blame, on the next page
• Task 23, Reverting a Committed Revision, on page 70

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=67

DETECTIVE WORK WITH SVN BLAME 68

22 Detective Work with svn blame

While working on a programming task, it’s often very useful to find out who
most recently changed a particular piece of code. You might find the code
hard to understand or have questions about it, or it might just be plain bad
code, and you’d like to offer some advice to whoever wrote it.
The Subversion blame command tells you who is responsible for each line
in a particular file. You can also use praise, annotate, and ann as
synonyms for blame.
When you run the blame command, Subversion goes back through the
history of the file and determines who most recently changed each line and
when they changed it. In the command-line example on the facing page, we
can see thatmbench.java has two people who have changed it most
recently, mike and ian. The numbers that Subversion prints by each line
aren’t line numbers; they are the revision in which that line was most
recently changed.
Subversion is telling us who changed each line in the file and when that
change was made. This isn’t quite the same as telling us who wrote the
code—if someone commits a change that adds something to a line, removes
something, or even just changes whitespace, blame will put their name on
that line of code. This is a subtle distinction, but blame is still useful because
if someone is committing a change to a line of code, they should know what
that code does.
TortoiseSVN shows the blame information in a scrollable window with
usernames and revision numbers down the left side. Hover the mouse over a
particular revision number to see extra information, including the log
message for that revision. Right-clicking a revision number will give extra
options, such as viewing the revision in full, including all the files that were
changed.
As of this writing, Cornerstone unfortunately does not support showing
blame information, so you’ll need to use the command-line client instead.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=68

DETECTIVE WORK WITH SVN BLAME 69

Show blame information using the command-line client.

mbench> svn blame src/mbench.java

11 mike import com.mongodb.Mongo;

: : :

6 mike public class mbench {

11 mike public static void main(String[] args) {

11 mike if (args.length != 3) {

6 mike usage();

7 mike return;

6 mike }

: : :

11 mike worker worker = new worker(db, runTime);

11 mike worker.go();

12 mike

14 ian long readsPerSec = worker.getReads() / runTime;

14 ian long writesPerSec = worker.getWrites() / runTime;

14 ian System.out.println("Reads/sec: " + readsPerSec);

14 ian System.out.println("Writes/sec: " + writesPerSec);

6 mike }

Show blame information using Tortoise.

Navigate to your working copy using Windows Explorer. Right-click a file,
and choose TortoiseSVN > Blame.... Click OK to use the default settings.
TortoiseSVN will show blame information from the earliest revision of the
file.

Related Tasks

• Task 8, Seeing What You’ve Changed, on page 34
• Task 21, Viewing the Log, on page 66

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=69

REVERTING A COMMITTED REVISION 70

23 Reverting a Committed Revision

Sometimes you will want to undo a change that has been committed to the
repository. You might find out that a change intended to fix a bug actually
introduced a new bug, and you want to undo your attempted bug fix. The
requirements for your software might have changed, meaning that some
code changes you committed are no longer worthwhile. Whatever the
reason, Subversion’s history tracking tools allow you to go back and undo
the changes that were made.
Subversion doesn’t actually allow us to delete history from the repository;
we can only keep moving forward. To undo an old revision, we have to
reverse whatever changes were made in the old revision and then commit a
new revision. This is called a reverse merge.
Use Subversion’s history features to determine the change you want to
revert. A reverse merge will update your working copy files so they no
longer contain the changes from the original revision—you are not changing
anything inside the repository so you will get a chance to test that the revert
has worked properly. As with any merge operation, you might encounter
conflicts. Task 18, Handling Conflicts, on page 58 has more information on
dealing with conflicts.
If you only want to undo part of a committed revision rather than the whole
revision, you need to revert some of your working copy files after
Subversion has finished the reverse merge. For these files, you are reverting
the reverse merge, which gets you back where you started.
If you want to revert only changes to a particular directory, then things are
much easier. For the command-line client, change to the directory you want
to revert before running the revert command. If you’re using Tortoise,
right-click the folder containing files you want to revert before using the log
to find, and revert the change.
The change you are reverting might be recent, but it could also be quite old.
Depending on how fast your code base evolves, other parts of the code may
have changed since the original change was committed. You should always
run a build before checking in to make sure that everything still works.
If you are reverting using Cornerstone, be aware that it works slightly
differently than the command line and Tortoise clients. Reverting to a
particular revision undoes all the changes made since that revision. In most
cases this is still useful, but it’s a little less surgical than doing a
command-line reverse merge.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=70

REVERTING A COMMITTED REVISION 71

Revert a revision using the command-line client.

mbench> svn merge -r 14:13 .

--- Reverse-merging r14 into '.':

G .idea/workspace.xml

U src/mbench.java

prompt> svn commit -m "Reverted revision 14"

Revert a revision using Tortoise.

Browse to your working copy folder using Windows Explorer. Right-click
the root folder, and choose TortoiseSVN > Show Log. Find the change you
want to revert, and then right-click it and choose “Revert changes from this
revision.” Tortoise will reverse merge the change.
Run a build to make sure you haven’t broken anything, and then commit
your changes back into the repository.

Revert a revision using Cornerstone.

In the working copy browser, select the items you want to revert to a
previous revision, and then select Working Copy > Revert... from the
Cornerstone menu.
Type a revision number or use the revision picker to choose the revision to
which you want to revert. Click Revert to set the items back to the selected
revision.
Run a build to make sure you haven’t broken anything, and then commit
your changes back into the repository.

Related Tasks

• Task 15, Reverting Working Copy Changes, on page 48
• Task 21, Viewing the Log, on page 66
• Task 18, Handling Conflicts, on page 58

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=71

Part V

Branching, Merging, and Tagging

Download from Wow! eBook <www.wowebook.com>

BRANCHING, MERGING, AND TAGGING 73

Real-world software projects are rarely straightforward and easy. The

team must develop the software, stabilize it ready to be released

into production, and support it once it’s in production. We’ve shown

how a team can use Subversion to collaborate during develop-

ment; this chapter will focus on how a team can release and sup-

port their software.

Usually when a team is preparing to release their software, they

want to focus on quality. The team might decide to fix bugs and

improve performance rather than adding new features. Generally,

though, the team will want to continue some forward momentum.

Maybe the team will split, with some developers working on stabiliz-

ing the code for release and everyone else developing as normal.

These two activities, stabilization and adding new features, gener-

ally cannot be done in the same code base. It’s very likely that the

new features will add instability to the software, which is exactly

what we don’t want when we’re trying to put a release into pro-

duction. The solution is to branch the code. Branching splits off a

new line of development where stabilization and bug fixing can be

done, while new features can continue to be added on the trunk.

The following diagram shows the branch and the trunk visually:

release branch

trunk

create
branch

stabilize
for

release

new features
develop

fix bugs

The first step is to create a branch. Branches are identified with a

name and are stored in the branches directory within the Subver-

sion repository. A branch starts out as an exact copy of the trunk

but can be modified independently. One team can work on the

branch, fixing bugs and stabilizing the code. Another team can

work on the trunk, adding new features. The two teams will never

accidentally surprise each other because they are working on dif-

ferent branches.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=73

BRANCHING, MERGING, AND TAGGING 74

When working on a release branch, there are usually some bug fixes

or other improvements that we’d like to include in the trunk. Rather

than making a fix on the branch and then reimplementing the fix

on the trunk, Subversion allows us to merge the change from the

branch to the trunk. Subversion can do this because a branch is

much more than a simple copy of the files. Subversion remembers

the origin of the files on the trunk and the branch, and it uses their

shared ancestry to make merges easier and more automatic. The

dotted lines on the following diagram show changes being merged

from the release branch to the trunk:

release branch

trunk

create
branch

merge all
 branch changes

stabilize
for

release

new features
develop

fix bugs

The diagram shows a fairly standard release branch strategy but

does require a lot of merging because every change made on the

branch needs to be merged back to the trunk. It’s usually best to

reduce the number of merges in your branching strategy because

this reduces effort and the potential for a “forgotten” merge. We

can change the branching strategy to reduce merging as follows.

Stabilize for release before creating the branch, and then fix any

bugs on the trunk and merge them to the branch. The branch dia-

gram looks like this:

release branch

trunk

create
branch

merge
 bug fixes

stabilize
for

release

new features
developfix bugs

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=74

BRANCHING, MERGING, AND TAGGING 75

You might already be familiar with branching and merging and

have your own strategy. This is fine; just make sure everyone on the

team understands where they need to make fixes and where they

should merge. If you’re not careful and disciplined, it’s possible to

“lose” a change. For example, if you fixed a bug on the release

branch but forgot to merge the fix to the trunk, the trunk still has that

bug. The QA team might see the bug in a later release and call it a

regression since from their perspective it was fixed once already.

Another strategy worth mentioning is called feature branching. A

team might use this when a new feature will take a long time or

cause some instability in the code base. Instead of developing the

feature on the trunk, the team can create a branch specifically

for the feature. The rest of development continues on the trunk as

normal. The feature branch should be updated with trunk changes

frequently—usually daily—to keep the feature branch “close” to the

trunk. This merge from the trunk to the feature branch is known as

rebasing. Once the feature is finished, merge the feature branch

back to the trunk.

trunk

create
branch

daily
 merge

trunk features
develop

implement
feature

merge to
trunk

When a customer calls up with a problem, it’s important to know

exactly what code they are running so you can diagnose and fix

the problem. You should only ship software to a customer from a

release branch, but since the code on the branch can change over

time, you need a better way to uniquely identify a release. With

Subversion, you can tag the code that was used to build a release,

giving it a number such as 2.0.3. To create a tag, you will copy your

release branch into a named directory within the repository tags

directory. Usually the tag name is also compiled into the software

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=75

BRANCHING, MERGING, AND TAGGING 76

as a version number. Once you know what version your customer is

running, you can check out the tagged code and get exactly the

code that is running in production.

The following diagram shows a release branch with two tags, R-1.0.0

and R-1.0.1:

release branch

trun

fix bugs

create tags

R-1.0.0 R-1.0.1

Covered in this part:

• Task 24, Creating a Branch, on page 78 shows how to create

a release branch.

• If you have a trunk working copy and want to quickly switch

to a branch, follow the instructions in Task 25, Switching to a

Branch, on page 80.

• Task 26, Merging Changes from Trunk to Branch, on page 82

covers the process for merging changes, such as bug fixes, to

a branch.

• Repeated merging, usually used to keep the trunk and a

branch in sync, is discussed in Task 27, Using Change Tracking,

on page 84.

• Tagging is explained in detail in Task 28, Tagging a Release, on

page 86.

Let’s start by creating a release branch.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=76

BRANCHING, MERGING, AND TAGGING 77

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=77

CREATING A BRANCH 78

24 Creating a Branch

Subversion branches are copies of the trunk and are stored in the branches

directory inside the repository. The branches directory sits alongside the
trunk directory, as we saw in Task 5, Creating an Empty Project, on page 24.
This directory organization is a Subversion convention—nothing forces you
to organize your repository in this way, but if you stick to the convention, it
makes it easier for people to work with your project.
To create a branch, use the Subversion copy command to copy the trunk to a
new location. You should always use repository URLs when creating a
branch. You can copy the file revisions in a working copy to create a branch,
but using a repository URL is much faster. It’s also safer because if your
working copy contains mixed revisions (not all the files in a working copy
have to be at the same revision), Subversion will faithfully copy the mixed
revisions to the branch, which usually isn’t what you want to do.
Branches can be named using any characters that Subversion allows in a
directory name, including spaces and characters with accents (although we
suggest sticking to alphanumerics). Use a naming scheme that makes it easy
to identify branches. Here we’re using “RB” to indicate a release branch,
followed by the version number of the branch. You could also organize your
branches into different directories, such as releases/1.0.
Once you have created your branch, you can check out a working copy of
the code. Make sure that you use a working copy directory name that makes
it easy to identify the branch. In our example, we already have anmbench

directory for the trunk working copy, so we check out into anmbench-1.0

directory for the 1.0 release branch.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=78

CREATING A BRANCH 79

Create a release branch.

prompt> svn copy -m "Create 1.0 release branch" \

http://svn.mycompany.com/mbench/trunk \

http://svn.mycompany.com/mbench/branches/RB_1.0

Check out the branch to a new working copy.

prompt> cd ~/work

prompt> svn checkout \

http://svn.mycompany.com/mbench/branches/RB_1.0 \

mbench-1.0

Create a branch using Tortoise.

Using Windows Explorer, right-click the base directory for your working
copy, and choose TortoiseSVN > Branch/tag....
Edit the To URL setting, replacing trunk with branches/RB_1.0, and click
OK.
Enter a log message, and click OK to create the branch.

Create a branch using Cornerstone.

Select your repository from the repository source list, and then navigate to
the trunk directory for your project.
Drag the trunk directory to the branches directory while holding down the
Option key. Your mouse pointer will indicate you are about to make a copy
with a green + icon.
Give the branch a name, click Copy, and then enter a log message. Click
Continue to create the branch.

Related Tasks

• Task 7, Checking Out a Working Copy, on page 32
• Task 25, Switching to a Branch, on the following page
• Task 26,Merging Changes from Trunk to Branch, on page 82

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=79

SWITCHING TO A BRANCH 80

25 Switching to a Branch

Once you have created a branch, changes made on the trunk will be isolated
from changes made on the branch. To make changes to the branch, you need
to have a working copy that is pointing at the branch instead of the trunk.
The easiest way to get a working copy of the branch is to check out a new
working copy using the branch URL instead of the usual trunk URL. This
leaves you with two working copies on your computer: one for the trunk and
one for the branch. Sometimes it’s not desirable to have two working copies,
for example when the working copy is large and takes a long time to check
out or when you have application servers or databases configured to point to
the working copy.
The switch command tells Subversion to take an existing working copy and
update it so that it is pointing at a different branch. Subversion figures out
what version of the files you have in your working copy and then merges
changes as necessary to reflect the state of the branch. A switched working
copy, under most circumstances, is identical to a freshly checked-out copy of
the branch.
If you spend a lot of time switching between branches, it’s possible to lose
track of where a particular working copy is pointing. The svn info command
will print out this information. If you’re using Tortoise, right-clicking in any
working copy folder and choosing TortoiseSVN > Repo-browser will always
pop up the browser pointing to wherever your working copy is pointed.
Sometimes you might do some work in a working copy, such as fixing a bug,
and then realize that you should have done the work on a branch instead.
Your work is not wasted, however. Switching to a branch attempts to leave
your working copy changes intact, so you can switch your working copy to
the branch and then check in your changes.
It’s very easy to lose track of where you are if you switch a working copy a
lot. We recommend using multiple working copies for each of your branches
and avoiding switching where possible.
Cornerstone does not include an option to switch a working copy. Use
multiple working copies for each of your branches instead.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=80

SWITCHING TO A BRANCH 81

Switch to a branch.

prompt> cd work/mbench

mbench> svn switch http://svn.mycompany.com/mbench/branches/RB_1.0

Switch to a branch using Tortoise.

Using Windows Explorer, navigate to the base directory for your working
copy. Right-click the base directory, and choose TortoiseSVN > Switch....
Edit the To URL setting to reflect the branch you’d like to switch to, or press
the ... button to use the repo browser to find the branch.
Click OK to perform the switch.

Related Tasks

• Task 24, Creating a Branch, on page 78
• Task 26,Merging Changes from Trunk to Branch, on the next page

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=81

MERGING CHANGES FROM TRUNK TO BRANCH 82

26 Merging Changes from Trunk to
Branch

When stabilizing your code ready for release, it’s best to fix bugs on the
trunk and then merge the fixes to the branch. If you do things the other way
around, you might forget to merge a fix back to the trunk, and it will show up
as a regression in your next release.
Fix the bug on the trunk, and note the revision number where the fix was
checked in. In a branch working copy, merge the revision or revisions from
the trunk. In most cases, the merge will work automatically without any
conflicts. The merge works kind of like an update; think of the branch as an
old working copy that needs to incorporate new changes from the trunk to
keep it up-to-date. If the trunk and the branch have diverged, though,
merging the change might create a conflict. See Task 18, Handling Conflicts,
on page 58 for more information about resolving conflicts.
After merging the changes, you should run a build to make sure that you
haven’t broken anything. You should also check to ensure the fix is still
working and that the bug is no longer present on the branch version of the
code. Check in the changes to complete the merge.
When checking in, it’s a good idea to use a log message that includes the
revisions you merged and the number or identifier for the bug that you’re
fixing. The other members of your team will thank you for the extra
information if they have to chase down a bug fix later.
Tortoise includes some nice GUI tools for finding and merging revisions, so
you don’t need to do quite as much work remembering revision numbers.
Cornerstone unfortunately does not include merge functionality, so you’ll
need to use the command-line client for Mac merging.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=82

MERGING CHANGES FROM TRUNK TO BRANCH 83

Merge a single revision to a branch.

prompt> cd work/mbench-1.0

mbench-1.0> svn merge -c 16 http://svn.mycompany.com/mbench/trunk

mbench-1.0> svn commit -m "Merged r16 (fix bug-7) from the trunk"

Merge a range of revisions to a branch.

prompt> cd work/mbench-1.0

mbench-1.0> svn merge -r 19:22 http://svn.mycompany.com/mbench/trunk

mbench-1.0> svn commit -m \

"Merged r19-22 from the trunk (fix bugs 9 and 11)"

Merge revisions using Tortoise.

Right-click in the base directory of a branch working copy, and choose
TortoiseSVN > Merge....
Select “Merge a range of revisions” as the merge type, and click Next.
Enter the URL for the project trunk in the “URL to merge from” box.
Alternatively, click the ... button and use the repo browser to find the trunk.
Enter revision numbers to merge, or press the “Show log” button to choose
revisions based on their log message.
Click Next to go to the Merge options screen, leave all the settings at their
defaults, and click Merge to complete the merge.
Check in your changes using a log message that includes a list of the
revisions you merged.

Related Tasks

• Task 24, Creating a Branch, on page 78
• Task 25, Switching to a Branch, on page 80

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=83

USING CHANGE TRACKING 84

27 Using Change Tracking

Sometimes a team will use a feature branch to work on a major change that
might be disruptive to developers working on the trunk. The work can
proceed safely on the branch, and when completed, the changes are merged
to the trunk, and the branch is deleted.
A feature might take a while to complete, increasing the risk that the trunk and
the feature branch diverge and making the impending “merge to trunk” more
difficult. Developers working on the branch might choose to periodically
pull changes from the trunk to the feature branch in order to reduce this
risk, a technique known as rebasing. Subversion’s merge tracking feature
allows us to automatically merge any trunk changes to a branch that have
not previously been merged and to repeat this merge as often as we’d like.
In the example on the facing page, we would like to add internationalization
to our software in the DEV_i18n branch. We start with the feature
branch already created and two working copies, mbench for the trunk and
mbench_i18n for the feature branch. Internationalization might take a while,
so we periodically reintegrate changes from the trunk. Run the reintegration
frequently, at least once a week. Each time Subversion will only pick
up new changes from the trunk that haven’t yet been merged to the branch.
Once the work on the feature branch is complete, merge from the feature
branch to the trunk. Subversion will only merge changes that were made on
the feature branch; it won’t try to merge changes that originally came from
the trunk. Because we have used merge tracking to keep the trunk and the
branch close together, merging the feature branch to the trunk should be
straightforward.
Merge tracking requires Subversion 1.6 or newer.10 If you are using an older
release of Subversion, you can achieve the same effect of keeping the branch
and the trunk close together, but you’ll need to manually track which
changes have been merged and do all your merges explicitly. There are
certain situations that merge tracking cannot handle, such as file renames
and deletes. If your team does a lot of refactoring, you should ask people to
avoid doing renames or deletes while you are working on a feature branch.

10. Change tracking was first implemented in Subversion 1.5, but the newer 1.6 release includes
substantial improvements and bug fixes. You really should use Subversion 1.6 or newer if you
want change tracking.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=84

USING CHANGE TRACKING 85

Merge outstanding changes from the trunk to a feature branch.

prompt> cd work/mbench_i18n

mbench_18n> svn update

mbench_18n> svn merge --reintegrate \

http://svn.mycompany.com/mbench/trunk

mbench_18n> svn commit -m "Merged all pending trunk changes"

Merge a completed feature branch to the trunk.

prompt> cd work/mbench

mbench> svn update

mbench> svn merge --reintegrate \

http://svn.mycompany.com/mbench/branches/DEV_i18n

mbench> svn commit -m "Merged feature branch DEV_i18n"

Merge trunk changes to a feature branch using Tortoise.

Right-click the base directory of your branch working copy, and choose
TortoiseSVN > Merge....
Select “Reintegrate a branch” as the merge type, and click Next.
Enter the URL for the project trunk in the “from URL” box.
Click Next to go to the Merge options screen, leave all the settings at their
defaults, and click Merge to complete the merge.

Merge a completed feature branch using Tortoise.

Right-click the base directory of your trunk working copy, and choose
TortoiseSVN > Merge....
Select “Reintegrate a branch” as the merge type, and click Next.
Enter the URL for the feature branch in the “from URL” box.
Click Next to go to the Merge options screen, leave all the settings at their
defaults, and click Merge to complete the merge.

Related Tasks

• Task 24, Creating a Branch, on page 78
• Task 25, Switching to a Branch, on page 80
• Task 26,Merging Changes from Trunk to Branch, on page 82

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=85

TAGGING A RELEASE 86

28 Tagging a Release

When creating a build of your software, especially one that will be released
to a customer, it’s important to know exactly what source code was used. We
can use a Subversion tag to record which revisions of files were used in a
build.
As part of the release process, someone needs to compile the software.
Usually this is a manual process done by one of the developers, but it can
also be automated. You might have a build box that automatically builds your
software every time a developer makes a change. Either way, you should
have a process for building the software and assigning it a build number.
Use the Subversion copy command to copy your working copy to a new
directory in your project’s tags directory. You should create a tag from the
working copy that was used to make the build, rather than the repository
HEAD revision, because other changes could have been checked in since
you started the build. Creating a tag from your working copy guarantees that
the tag contains exactly the revisions of the files that were used to make the
build. If your release is being created by an automated build server, it will
still have a working copy that it uses to compile the code. The build server
should create a tag from this working copy as part of the build process.
Cornerstone does not allow creation of a tag from a working copy, so you’ll
need to be a little bit more careful when tagging releases. Use the log
browser to update your working copy to a particular revision, run your build,
and then use the same revision when creating the tag.
You might have noticed that creating a tag and creating a branch both create
a copy of the files within the repository. This means that, in theory at least,
you could commit changes to a tag. A tag that has changed wouldn’t be
much use for identifying which files went into a build, so by convention tags
are read-only. Developers should never commit changes to a tag, and this
can be enforced by using a hook script in your repository. Task 42, Using
Repository Hooks, on page 122 includes an example of how to make your
tags directories read-only.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=86

TAGGING A RELEASE 87

Create a release tag from a working copy.

prompt> cd work/mbench-1.0

mbench-1.0> svn update

mbench-1.0> svn copy . \

http://svn.mycompany.com/mbench/tags/REL_1.0.0 \

-m "Create R1.0.0 tag"

Create a release tag using Tortoise.

Right-click the base directory of your working copy, and choose
TortoiseSVN > Branch/tag....
Click the ... button, and use the repo browser to navigate to your project’s
tags directory. Click OK, and then edit the URL so that it ends with the
desired tag name, for example tags/REL_1.0.0.
Pick which revision you’d like to create the tag from, usually either from a
specific revision or from your working copy.
Enter a log message, and click OK to create the tag.

Create a release tag using Cornerstone.

Select your repository from the repository source list. Use the repository
browser to find your release branch. Opt+drag the branch folder to the tags

folder (the cursor will change to a green + icon to indicate the copy), and
then release the mouse button.
Enter a name for the new tag such as REL_1.0.0. Click Copy, write a short log
message, and then click Continue to create the tag.

Related Tasks

• Task 7, Checking Out a Working Copy, on page 32
• Task 24, Creating a Branch, on page 78

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=87

Part VI

File Locking

Download from Wow! eBook <www.wowebook.com>

FILE LOCKING 89

Subversion enables a team to collaborate on a project by sharing

their files in the central repository. Everyone on the team is allowed

to edit any file in their working copy, and if two people edit the

same file at the same time, Subversion helps you merge the two

edits later. This is effectively an optimistic locking scheme. Subver-

sion knows that most of the time two people won’t be editing the

same file, so it allows things to proceed and provides tools to fix the

occasional collision when it occurs.

If you’re coming from a different version control tool, you might be

used to pessimistic locking. This is a scheme where if you want to

change a file, you first have to lock the file for editing. Once you are

done making changes, you can commit the changes and release

the lock. Pessimistic locking avoids the need to merge two people’s

edits but at a huge cost—only one person can work on a file at any

particular time. For a development team, this is a disaster. The team

can spend all day negotiating with each other about who is going

to lock a file and asking “Are you done yet?” It can be particularly

grating when someone locks a file and then goes home early—the

rest of the team is stalled until they get back.

Subversion’s “copy, modify, merge” scheme allows development to

flow more naturally, and its merge tools will usually automatically

merge sets of changes. Merging works great for text-based files—

source code, XML, SQL, and so on—but it won’t work at all for binary

files such as spreadsheets, word processing documents, pictures,

and movies. For these kinds of files, you might want to use pessimistic

locking to avoid merges.

Subversion’s file locking features allow you to specify that certain

files should be locked before they are edited. Subversion will check

them out as read-only in the working copy. Most good editing tools

will notice that a file is read-only, prompting the user to obtain a

lock on the file before doing their work. The user can make edits

to the file and then commit their changes, which also releases the

lock. Subversion provides some features so that authorized users can

break existing locks, which helps get around the “Joe locked a file

and went on vacation” problem.

Covered in this part:

• Instructing Subversion to enforce file locking for a particular file

is covered in Task 29, Enabling File Locking, on page 92.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=89

FILE LOCKING 90

• To make changes to a file where locking is enabled, you first

need to lock the file for your use. Task 30, Obtaining a Lock , on

page 94 shows you how to do this.

• Task 31, Releasing a Lock , on page 96 discusses how and

when you should relinquish a lock.

• In some circumstances, you’ll need to unlock a file that some-

one else has already locked. Task 32, Breaking Someone Else’s

Lock , on page 98 shows you how to do this and discusses

when it’s appropriate to do so.

Let’s start by enabling file locking for specific files.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=90

FILE LOCKING 91

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=91

ENABLING FILE LOCKING 92

29 Enabling File Locking

Subversion file locking is supported on all files within the repository, so a
user can in theory lock a file at any time. When someone else tries to commit
a change to the locked file, Subversion will reject the change because the file
is locked. This isn’t very useful, though, because someone could have done a
bunch of work that they now need to throw away because someone else has
locked the file. A much better solution would be to stop a user from editing a
file unless they have a lock on it in the first place.
Subversion’s advisory locking is enabled by setting the special
svn:needs-lock property on a file. It doesn’t matter what value the property
is set to; if the property is present, the file has locking enabled. Most teams
set svn:needs-lock to something simple like * or yes.
Once you have set the property on any files that need locking, you need to
commit the changes to the repository. After that point, anyone updating a
working copy will find those files marked read-only on their computer. If a
team member doesn’t update their working copy for a while, they won’t
know about the new locking requirement on the files. For this reason, it’s a
good idea to enable file locking as soon as you add a nonmergeable file to
the repository.
There is nothing forcing you to enable locking on all nonmergeable files in
your repository. You might decide that small website graphics used primarily
by your development team change so infrequently that it’s not worth locking
them. A spreadsheet containing critical reference data might be changed
daily and be a much better candidate for locking. In general, try to keep file
locking to a minimum. Locking imposes an overhead every time anyone
wants to edit a file and is worth doing only if your team is regularly wasting
effort on unmergeable changes.
To disable file locking on a particular file, just remove the svn:needs-lock

property by using the svn propdel command. If you’re using Tortoise,
choose TortoiseSVN > Properties, and delete the property. If you’re using
Cornerstone, set Needs Lock back to No inside the file Inspector panel.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=92

ENABLING FILE LOCKING 93

Mark a file that needs locking.

mbench> svn propset svn:needs-lock yes docs/benchmarks.xlsx

mbench> svn commit -m "Spreadsheet requires a lock before editing"

Mark a file that needs locking using Tortoise.

Using Windows Explorer, right-click the file, and choose TortoiseSVN >
Properties.
Click the New... button, and then use the Property name drop-down to
choose svn:needs-lock. Type any text you like into the property value,
usually something like yes or true is best.
Click OK twice to save your changes to the file’s properties, and then
commit your changes to save the new property to the repository.

Mark a file that needs locking using Cornerstone.

Select your project from the working copy sources list, and then expand the
working copy browser until you find the file you want to lock.
Select the file, and click the Inspector icon on the Cornerstone toolbar. The
Inspector panel will open on the right side of the Cornerstone window.
Select the Properties button within the Inspector panel, and set the Needs
Lock drop-down to yes. Click Save Changes, and then press the Commit
button on the toolbar to save your changes to the repository.

Related Tasks

• Task 30, Obtaining a Lock, on the next page
• Task 31, Releasing a Lock, on page 96
• Task 32, Breaking Someone Else’s Lock, on page 98

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=93

OBTAINING A LOCK 94

30 Obtaining a Lock

Files that are tagged with the special svn:needs-lock property are read-only
in your working copy. How “read-only” is implemented depends on your
operating system. On Windows, a file has a read-only attribute that you can
see by right-clicking and choosing Properties. On a Unix system the file’s
write flag is disabled, and on a Mac the file will be set to read-only if you
look in Finder’s Sharing and Permissions section.
The Subversion client marks files read-only to give you a reminder that you
should lock them before making changes. Depending on what software you
use to edit the files, you may or may not get some kind of a prompt or
warning indicating that the files are read-only. For example, using Paint on
Windows to edit a graphics file, you’ll be told the file is read-only only when
you try to save it. Using Microsoft Excel to open a spreadsheet will put
[Read-Only] in the window title to indicate the file is read-only but will still
let you edit the spreadsheet. If you’re going to use file locking, you should
make sure that you understand how your editing tool will let you know the
file is read-only.
When obtaining a lock, you can include a comment indicating why you’ve
locked the file. This is useful if you are going to have the file locked for a
while, because other users can query the repository to see your lock message.
If no one else has locked the file, your lock operation should succeed. Your
Subversion client will mark the file read-write in your working copy.
The lock operation can fail if someone else has already locked the file. In
this case, your Subversion client will tell you their username so you can go
ask them when they will be done making their changes and maybe wait for
them to unlock the file. In some cases, you might need to forcibly break or
“steal” a lock; see Task 32, Breaking Someone Else’s Lock, on page 98 for
more information.
Locking a file will fail if your working copy is out-of-date. The
command-line client and Tortoise will tell you what’s wrong, with Tortoise
even offering to update the file for you and try again. Unfortunately,
Cornerstone will just quietly fail to lock the file; you won’t get a little
padlock icon indicating a lock. If locking fails, update your working copy
and then try the lock again.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=94

OBTAINING A LOCK 95

Lock a file for editing.

docs> svn update

docs> svn lock benchmarks.xlsx -m "Adding 64-bit results"

'benchmarks.xlsx' locked by user 'mike'.

Lock a file using Tortoise.

Using Windows Explorer, right-click the file you want to lock, and choose
“SVN Get lock....”
Enter a message describing why you are locking the file, and then click OK
to lock the file.

Lock several files using Tortoise.

Using Windows Explorer, right-click the base directory of your working
copy, and choose “TortoiseSVN > Get lock....”
Tortoise will display all the files in your working copy, along with a column
indicating whether the files are marked as needing a lock.
Check the files you want to lock, enter a message describing why you are
locking the files, and then click OK to lock the files.

Lock a file using Cornerstone.

Using the working copy browser, find the file you want to lock. Files that
need locks are indicated with a little tag icon just after the revision column in
the browser.
Cmd+click the file, and choose Lock.... Provide a message indicating why
you are locking the file, and then click Lock. A padlock icon will appear,
signifying that you have locked the file.

Related Tasks

• Task 29, Enabling File Locking, on page 92
• Task 31, Releasing a Lock, on the following page
• Task 32, Breaking Someone Else’s Lock, on page 98

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=95

RELEASING A LOCK 96

31 Releasing a Lock

After locking a file, you might change your mind and decide not to modify
it. Subversion releases all the locks in a working copy when you commit a
change, but if you’re not going to check in for a while, it would probably be
polite to release the lock straightaway so someone else can lock the file if
they need to do so.
Subversion will happily let you release a lock even if you have modified the
locked file. If you later check in changes to the unlocked file, you have
essentially avoided Subversion’s locking mechanism. This is bad news.
Someone else could edit the file in the meantime, and your commit could
force them to redo their work. You should always revert changes to a file
when you release a lock.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=96

RELEASING A LOCK 97

Unlock a file.

docs> svn unlock benchmarks.xlsx

'benchmarks.xlsx' unlocked.

Unlock a file using Tortoise.

Using Windows Explorer, right-click a locked file, and choose TortoiseSVN
> Release lock.
Alternatively, right-click a working copy folder, and choose TortoiseSVN >
Release lock. Tortoise will display all locked files within that directory.
Check the files you want to unlock, and then click OK.

Unlock a file using Cornerstone.

Using the working copy browser, find the file you want to unlock. Locked
files are indicated with a padlock icon.
Cmd+click the file, and choose Unlock.

Related Tasks

• Task 29, Enabling File Locking, on page 92
• Task 30, Obtaining a Lock, on page 94
• Task 32, Breaking Someone Else’s Lock, on the following page

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=97

BREAKING SOMEONE ELSE’S LOCK 98

32 Breaking Someone Else’s Lock

File locking is a consensual activity; it’s designed to save a team effort
where more than one person might change an unmergeable file. Sometimes,
though, someone might not play by the rules. If a team member locks a file
and goes home for the night (or worse goes on vacation!), then no one else is
able to lock and edit the file. Subversion allows us to forcibly break a lock or
more commonly to steal a lock from someone else.
Stealing a lock is usually preferred, because the Subversion server will
unlock the file and relock it for a different user all in one atomic operation. If
instead we unlock the file and then try to relock it, there’s a small chance that
another user can get in first and lock the file ahead of us. Once the file has
been relocked or the lock stolen, the person with the new lock can continue
as usual.
If you are the unfortunate user who went home for the night and had their
lock stolen, things aren’t so great. The Subversion client still sees a locked
file in the working copy, but the lock is no longer valid. In Subversion terms,
the lock is defunct. If you try to commit a change using the defunct lock,
Subversion will refuse, and you’ll have no choice but to revert your changes,
lock the file again, and make the changes again.
The Subversion client notices defunct locks any time a working copy is
updated from the repository, so it’s good practice to update frequently. It
would also be polite, should you break someone else’s lock, to email them to
let them know.
By default, Subversion allows any user to break or steal a lock. If you want
to restrict this ability, Subversion’s pre-lock and pre-unlock hook scripts
can allow or prevent lock and unlock operations. The post-lock and
post-unlock hook scripts can be used to perform additional processing such
as sending an email when a lock is broken. Task 42, Using Repository
Hooks, on page 122 covers hooks in more detail.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=98

BREAKING SOMEONE ELSE’S LOCK 99

Forcibly unlock a file.

docs> svn lock benchmarks.xlsx

svn: warning: Path '/trunk/docs/benchmarks.xlsx' is already locked

by user 'mmason' in filesystem '/home/svn/mbench/db'

docs> svn unlock --force benchmarks.xlsx

'benchmarks.xlsx' unlocked.

Steal a lock.

docs> svn lock benchmarks.xlsx

svn: warning: Path '/trunk/docs/benchmarks.xlsx' is already locked

by user 'mmason' in filesystem '/home/svn/mbench/db'

docs> svn lock --force benchmarks.xlsx

'benchmarks.xlsx' locked by user 'mike'.

Steal a lock using Tortoise.

Using Windows Explorer, navigate to the file for which you want to steal the
lock, right-click, and choose “SVN Get lock....”
Enter an optional message describing why you are locking the file, and then
check the “Steal the locks” option. Click OK to steal the locks.

Steal a lock using Cornerstone.

In the Cornerstone menu, select the View menu, and ensure Show
Repository Status is enabled. This instructs Cornerstone to query the
repository looking for locks; files that are locked by someone else will be
indicated with a gray padlock icon.
Select your project from the working copy sources list, and then expand the
working copy browser to find the file for which you want to steal the lock.
Cmd+click the file, and choose Lock... to attempt to lock the file.

Related Tasks

• Task 29, Enabling File Locking, on page 92
• Task 30, Obtaining a Lock, on page 94
• Task 31, Releasing a Lock, on page 96

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=99

Part VII

Setting Up a Server

Download from Wow! eBook <www.wowebook.com>

SETTING UP A SERVER 101

Subversion stores your files inside a repository, which itself is just a col-

lection of files on a disk somewhere. Subversion allows you to create

an arbitrary directory structure inside the repository to organize your

projects and files. Usually a repository will contain multiple projects,

each inside their own directory. The top level of a repository like

this will contain a directory for each project, and then each of the

project directories will contain the usual trunk, tags, and branches

directories. Alternatively, you might have a repository dedicated to

each project. In this type of repository, the trunk, tags, and branches

directories appear at the top level of the repository.

This might sound like a complicated choice, but don’t worry. Unless

you have a specific reason to separate projects into their own repos-

itories, just set up a single repository and host multiple projects inside

it. Once the repository is exposed using a URL, a user actually can’t

tell which hosting style is in use—this really is just an administrative

decision.

To make a repository useful for a development team, we need to

add a Subversion server so the files are available over a network. A

variety of different servers are available for Subversion; you need to

pick one that matches your needs.

svnserve is the simplest and easiest-to-use server. It’s very lightweight

and speaks a custom svn protocol. Unfortunately, svnserve doesn’t

provide encryption so is usually limited to LAN use where you have

control of all the network traffic.

Secure Shell can be used to protect svnserve connections by adding

a secure, encrypted SSH connection. This provides bulletproof secu-

rity but at quite a high administrative cost since each Subversion

user needs to have a corresponding Unix user account.

The Apache web server can be used to allow Subversion repository

access using http and https connections, just like those used by a

web browser. This is by far the most popular way to put a Subversion

repository online. Using an SSL certificate, you get the same secu-

rity used by websites to protect credit card information. You can

also integrate with an existing user credentials store such as LDAP

or even Active Directory. Using Apache makes it easy to serve mul-

tiple repositories from a single machine, and it allows you to apply

fine-grained security to each repository, right down to the directory

level.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=101

SETTING UP A SERVER 102

This part of the book focuses on using Apache as a Subversion server

on the Ubuntu Linux operating system, but we also show how to run

a server on Windows using svnserve. We also include some recipes

for backing up and restoring your repository and some tips on repos-

itory security.

Covered in this part:

• Task 33, Installing Subversion Server , on page 104 shows how

to install Subversion on Ubuntu Linux.

• Once you have a Subversion server running, you need to cre-

ate a repository that will be served up over the network. Task

34, Creating a Repository , on page 106 shows how to do this.

• Task 35, Installing Subversion Server on Windows, on page 108

covers using Windows as a Subversion server.

• Not everyone wants to run their own Subversion server. Task

36, Using Third-Party Subversion Hosting, on page 110 discusses

how to use a third-party hosting service.

• If you have an existing CVS repository, you can convert it to a

Subversion repository and keep all your history, branches, and

tags. Task 37, Migrating a CVS Repository , on page 112 covers

this in detail.

• Repository backup and subsequent restoration is covered in

Task 38, Backing Up and Restoring, on page 114.

• Task 39, Performing Full Weekly Backups, on page 116 and

Task 40, Performing Incremental Daily Backups, on page 118

together describe an efficient backup regime.

• You should never put an unsecured repository online. Task 41,

Securing a Repository , on page 120 shows how to apply sim-

ple user- and group-based security to your repository.

• Task 42, Using Repository Hooks, on page 122 covers how to

influence Subversion’s revision commit life cycle so you can

do interesting stuff such as blocking commits or sending post-

commit emails.

Let’s start by getting a Subversion server installed.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=102

SETTING UP A SERVER 103

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=103

INSTALLING SUBVERSION SERVER 104

33 Installing Subversion Server

Apache is by far the most popular method for getting a Subversion
repository online. Most Linux servers come with Apache preinstalled, and at
last count Apache runs more than half of all the servers on the Internet.11
Using Apache makes your repository available via HTTP, and you can take
advantage of all of Apache’s other features such as SSL security, LDAP user
authentication, and so on.
The Apache Subversion modules add extra directives that you can use in
Apache configuration files. If you’re hosting multiple websites on a single
server, you can add a Subversion repository to a particular site by
configuring its virtual host rather than using the global dav_svn.conf.
In this example, we’re using the SVNParentPath directive so that every
directory underneath /home/svn will be assumed to contain a repository. If
you need a new repository, simply create one; you don’t need to reconfigure
Apache. If you instead use the SVNPath directive, you will host a single
repository. Sometimes it’s better to use just a single repository because it’s
less hassle to administer, back up, and so on. Even a single repository can
host multiple projects, so both approaches can work.
If you use the configuration described here, a repository created in
/home/svn/myrepo will be available on your Apache server at http://
myserver.com/svn/myrepo.
When using htpasswd, you only need to use the -c argument when you first
create the file. After that, drop the argument to add new users to an existing
file. This isn’t particularly intuitive, but htpasswd has been around a lot
longer than Subversion and isn’t quite as friendly. If you are using virtual
hosts with Apache, you can use a different password file for each site. If
you’re using SVNPath, you can have a different password file for each
repository.
Once you complete the configuration, you need to restart Apache. You can
then create repositories, as described in Task 34, Creating a Repository, on
page 106.

11. http://news.netcraft.com/archives/2010/06/16/june-2010-web-server-survey.html

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://myserver.com/svn/myrepo
http://myserver.com/svn/myrepo
http://news.netcraft.com/archives/2010/06/16/june-2010-web-server-survey.html
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=104

INSTALLING SUBVERSION SERVER 105

Install Apache and the Subversion modules.

prompt> sudo apt-get update

prompt> sudo apt-get install apache2 libapache2-svn

You can also use the Synaptic package manager to install the apache2 and
libapache2-svn packages and any dependencies.

Create a repositories directory.

prompt> sudo mkdir /home/svn

prompt> sudo chown www-data /home/svn

Configure Apache to serve your Subversion repositories.

Edit /etc/apache2/mods-enabled/dav_svn.conf to configure
Subversion. Your configuration should look like this:
<Location /svn>

DAV svn

SVNParentPath /home/svn

AuthType Basic

AuthName "Subversion Repository"

AuthUserFile /home/svn/passwd

</Location>

Create a Subversion password file.

prompt> sudo htpasswd -c /home/svn/passwd fred

prompt> sudo htpasswd /home/svn/passwd barney

prompt> sudo chown www-data /home/svn/passwd

Restart Apache to apply your changes.

prompt> sudo service apache2 restart

Related Tasks

• Task 35, Installing Subversion Server on Windows, on page 108
• Task 5, Creating an Empty Project, on page 24
• Task 36, Using Third-Party Subversion Hosting, on page 110

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=105

CREATING A REPOSITORY 106

34 Creating a Repository

Subversion stores files inside a repository, which is simply a directory on the
server that has been initialized using the svnadmin create command. If you
are using Apache to host the Subversion server, as described in Task 33,
Installing Subversion Server, on page 104, you also need to set the
permissions on the directory so the www-user user can modify and create
files in the directory.
If you’re using the SVNParentPath directive, you’re telling Apache that
within a particular directory on your server, any subdirectory is a Subversion
repository, and Apache should make each repository available over the
network. Most often with this style of configuration you’re creating a
separate repository for each project, in which case you should name the
directory after the project rather than calling itmyrepos.
If you use the configuration described here, a repository created in
/home/svn/myproject will be available on your Apache server at http://
myserver.com/svn/myproject.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://myserver.com/svn/myproject
http://myserver.com/svn/myproject
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=106

CREATING A REPOSITORY 107

Create a directory for the repository.

prompt> cd /home/svn

svn> sudo mkdir myrepos

Initialize the new repository.

svn> sudo svnadmin create myrepos

svn> sudo chown -R www-data myrepos

Related Tasks

• Task 33, Installing Subversion Server, on page 104
• Task 5, Creating an Empty Project, on page 24
• Task 36, Using Third-Party Subversion Hosting, on page 110

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=107

INSTALLING SUBVERSION SERVER ON WINDOWS 108

35 Installing Subversion Server on
Windows

CollabNet is the commercial sponsor for the Subversion project and builds a
number of products using Subversion. They also offer training and support
services, as well as a number of prebuilt binaries for Subversion. The
instructions on the facing page allow you to install svnserve for Windows,
but the CollabNet installer also allows you to install Apache. You might use
Apache if you need more flexibility or to make a Subversion repository
available over the Web.
The CollabNet configuration for svnserve ensures that any directory created
inside C:\svn_repos is served as a repository. If you want to create multiple
repositories, just create several directories, and use svnadmin create to
initialize a repository in each directory.
Inside the repository Subversion stores configuration files in a conf

directory. These are plain-text files, and you can edit them with any text
editor.
The svnserve.conf file contains settings for access control, password files,
and path-based access control. The file is well commented; read through and
uncomment settings to configure svnserve to your liking.
Once you have configured svnserve, you need to use Control Panel to start
the service. On Windows XP, you’ll find this under Administrative Tools.
For Windows Vista onward, you can just search for services. You only need
to start the service manually once; the service will start automatically the
next time the computer is rebooted.
Point a Subversion client at svn://localhost/repos to test that your
installation has succeeded. If the client connection succeeds, you can start
creating project directories within the repository, as described in Task 5,
Creating an Empty Project, on page 24.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=108

INSTALLING SUBVERSION SERVER ON WINDOWS 109

Download and install CollabNet Subversion server.

Visit http://www.open.collab.net/downloads/subversion/, and download the
Subversion “server and client” for Windows. Double-click the installer to
start the installation process.
When the installer asks you to choose components, ensure svnserve is
selected and Apache is not selected.
On the svnserve configuration screen, accept the default options. Make sure
“install as Windows service” is selected, and then click Next a few times to
complete the installation.

Create a repository directory, and initialize the repository.

Click Start > Run..., and type cmd to start a command prompt. Enter the
following commands:
C:\users\mmason> cd \svn_repository

C:\svn_repository> md repos

C:\svn_repository> svnadmin create repos

Configure security for your repository.

Edit C:\svn_repository\repos\conf\svnserve.conf, and uncomment the
password-db line to enable a password database. Save the file.
Edit C:\svn_repository\repos\conf\passwd. Enter users and passwords
in the file as follows:
[users]

mike = s3cr3t

jim = b4n4n4

Start svnserve using Windows Control Panel.

Scroll down until you find CollabNet Subversion svnserve. Select it, and
then click the green “play” icon on the toolbar.

Related Tasks

• Task 5, Creating an Empty Project, on page 24
• Task 36, Using Third-Party Subversion Hosting, on the next page

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://www.open.collab.net/downloads/subversion/
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=109

USING THIRD-PARTY SUBVERSION HOSTING 110

36 Using Third-Party Subversion Hosting

If you don’t want to run and maintain your own Subversion server, there are
a number of third-party hosting services that will provide a server for you.
If you are developing open source software, SourceForge12 will host your
Subversion repository for free. Sign up on the website, and create your
project. SourceForge will create a repository for your project, and you can
begin using it. Remember to create the trunk, tags, and branches

directories before starting work.
Commercial hosting is available if you want to keep your source code
private. Many hosting providers are available, and they often include
additional features such as bug trackers, wikis, and mailing lists. You can
usually try these services for free, either for a certain trial period or with
restrictions on the size of your repository or the number of developers. A
free trial is a good way to check out a particular service provider.
Unfuddle13 is one such provider, offering free trials with one project and a
repository up to 200MB. After you’ve created your account, click the
Repositories tab and then New Repository. As with SourceForge, remember
to create trunk, tags, and branches directories before starting work.
Beanstalk14 is another commercial hosting service that offers both
Subversion and Git repositories. Their free account allows you to create one
repository with up to three users and is limited to 100MB of storage.

12. http://www.sourceforge.net/
13. http://unfuddle.com/
14. http://beanstalkapp.com/

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://www.sourceforge.net/
http://unfuddle.com/
http://beanstalkapp.com/
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=110

USING THIRD-PARTY SUBVERSION HOSTING 111

Create a project on SourceForge.

Visit SourceForge, and create an account for yourself. Log in, and create a
new project. Once active, you can check out from your project’s new
Subversion repository:
prompt> svn mkdir

https://myproject.svn.sourceforge.net/svnroot/myproject/trunk

prompt> svn mkdir

https://myproject.svn.sourceforge.net/svnroot/myproject/tags

prompt> svn mkdir

https://myproject.svn.sourceforge.net/svnroot/myproject/branches

prompt> cd /home/work

work> svn checkout

https://myproject.svn.sourceforge.net/svnroot/myproject/trunk

Create a project using Unfuddle.

Visit Unfuddle, and create an account for yourself. Log in, and create a new
trial project. You can check out from your project’s new Subversion
repository:
prompt> svn mkdir http://myuser.unfuddle.com/svn/myuser_myproject/trunk

prompt> svn mkdir http://myuser.unfuddle.com/svn/myuser_myproject/tags

prompt> svn mkdir http://myuser.unfuddle.com/svn/myuser_myproject/branches

prompt> cd /home/work

work> svn checkout http://myuser.unfuddle.com/svn/myuser_myproject/trunk

Create a project on Beanstalk.

Visit Beanstalk, and choose Pricing & Signup and then Free Account. After
signing up for an account, you should create a new Subversion repository.
Use the default settings, which on Beanstalk will automatically create trunk,
tags, and branches directories for you.
The trunk for your new project will be available at http://user.svn.
beanstalkapp.com/myproject/trunk/.

Related Tasks

• Task 5, Creating an Empty Project, on page 24

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://user.svn.beanstalkapp.com/myproject/trunk/
http://user.svn.beanstalkapp.com/myproject/trunk/
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=111

MIGRATING A CVS REPOSITORY 112

37 Migrating a CVS Repository

If you are using CVS for version control and want to upgrade to Subversion,
you can do so quite easily. Subversion is designed to be a drop-in
replacement for CVS; it will run on the same hardware and has a user
interface similar to CVS. Subversion includes a tool called cvs2svn that
allows you to convert an existing CVS repository to a Subversion repository.
The tool preserves all your files, tags, branches, and history, making the
upgrade pretty seamless.
Converting from a CVS repository works best on a real Unix system, so
we’ve only included instructions for Ubuntu Linux. If you’re in a real pinch,
you can also try the conversion using Cygwin15 on Windows, but we really
don’t recommend it. Borrow an account on a Unix box if you have to; it’ll
make the conversion much smoother.
The first and most important step is to make a copy of your CVS repository.
Absolutely do not run the conversion against the primary copy of your CVS
repository. cvs2svn should (in theory) only be reading files from CVS, not
writing to them, but you can never be too careful with your data. We’ll say it
again: run cvs2svn on a copy of your CVS repository, not the actual
repository.
Converting from CVS will preserve all your history, branches, and tags. If
you don’t need all of that, you can run a faster conversion by specifying the
--trunk-only option. Once complete, you will have a Subversion dump file
containing all your CVS history. Dump files are Subversion’s way of
backing up a repository; you need to load the dump file into an empty
Subversion repository in order to see the converted files.
The --encoding option specifies different ISO file encodings to use when
trying to convert from the CVS files. The two most common are UTF8 and
Latin-1. If these don’t work for you, find the correct one from the full Python
encodings list.16

15. http://www.cygwin.com/
16. http://docs.python.org/library/codecs.html#standard-encodings

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://www.cygwin.com/
http://docs.python.org/library/codecs.html#standard-encodings
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=112

MIGRATING A CVS REPOSITORY 113

Install cvs2svn.

prompt> sudo apt-get update

prompt> sudo apt-get install cvs2svn

Create a copy of your CVS repository.

prompt> mkdir /tmp/cvs-convert

prompt> cp -r /home/cvs/some-project /tmp/cvs-convert

Convert your CVS repository to a Subversion dump file.

prompt> cd /tmp/cvs-convert

cvs-convert> cvs2svn --dumpfile=some-project.dump

--encoding=UTF8 --encoding=latin1 some-project/

Use the dump file to create a new repository.

prompt> cd /home/svn

svn> sudo mkdir some-project

svn> sudo svnadmin create some-project/

svn> sudo svnadmin load some-project/ \

< /tmp/cvs-convert/some-project.dump

Related Tasks

• Task 5, Creating an Empty Project, on page 24

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=113

BACKING UP AND RESTORING 114

38 Backing Up and Restoring

The development team is relying on their Subversion repository to be a safe
place to store all their hard work. Anyone who’s worked as a systems
administrator will know that disks can go bad at any time and that servers
can get hacked, dropped, magnetized, and even accidentally reinstalled at
any time. It’s very important to have backups and to test those backups
regularly.
The simplest way to create a backup is to use svnadmin dump to create a
dump file. The dump file will contain the complete history of everything that
happened to your repository—every file added, every file deleted, and every
file changed. Subversion can replay this history to re-create the repository if
anything bad happens to the original. Once you have created a dump file,
you should store it on a different server.
Since Subversion 1.2, most repositories are simple collections of files on
disk rather than something complicated like a database. In theory, if your
server already has a full disk backup solution configured, your Subversion
repository is also backed up. However, if someone checks in a change while
the backup is running, you could end up with an inconsistent backup. To
avoid this, create a dump file. Even if a check-in occurs while the dump is
running, you’ll end up with a consistent backup.
For large repositories, a full dump file could be quite large. You might prefer
to do an incremental dump every evening and a complete dump at the
weekend. The --incremental and -r REV arguments tell svnadmin to do an
incremental dump starting at a particular revision. With a little bit of Unix
scripting, you can create a backup regimen for your repository that does
daily incremental backups and weekly complete backups. Task 39,
Performing Full Weekly Backups, on page 116 and Task 40, Performing
Incremental Daily Backups, on page 118 show how to accomplish this.
In addition to backing up your repository, it’s a good idea to make sure it’s
not become corrupted over time. The svnadmin verify command will scan a
repository and check whether everything is OK. This takes quite a while to
run for larger repositories and will slow down the server, so you should run a
verify only during off-peak hours.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=114

BACKING UP AND RESTORING 115

Create a Subversion dump file for your repository.

prompt> svnadmin dump /home/svn/mbench > mbench.dump

Load the dump file to restore to a new repository.

prompt> svnadmin load /home/svn/mbench2 < mbench.dump

Verify the integrity of a repository.

prompt> svnadmin verify /home/svn/mbench

Related Tasks

• Task 34, Creating a Repository, on page 106
• Task 36, Using Third-Party Subversion Hosting, on page 110

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=115

PERFORMING FULL WEEKLY BACKUPS 116

39 Performing Full Weekly Backups

The Subversion administrative dump and load commands are an excellent
base upon which to build backup scripts for your repository. Depending on
how large your repository is and the frequency with which you want to run
backups, you might not always want to wait for a full backup to complete.
This script and the script in the next task form a basic full and incremental
backup regimen for your repository.
Most users will be comfortable running a full backup once a week and an
incremental backup every day. If you are more paranoid, you could run the
full backup every night and the incremental backup every hour. Some
administrators even use a post-commit hook script to run an incremental
backup after every check-in, but this is probably overkill most of the time.
full-backup.pl uses the svnadmin dump command to run a complete
backup of the repository. The script then uses the svnlook command to
determine the youngest (most recent) revision in the repository. This
revision number is saved into a last-backed-up file, which the incremental
backup script uses. Knowing what we have already backed up in the full
backup allows the incremental backup to run much faster.
The backup script also compresses the backup using gzip. Once the backup
is finished, remember to copy the backup files to a secure location such as a
network drive or tape drive. Simply having some compressed dump files on
the same disk as your Subversion repository isn’t providing much safety!

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=116

PERFORMING FULL WEEKLY BACKUPS 117

Create a full backup script for your repository.

Download full-backup.pl

#!/usr/bin/env perl

#

Perform a full backup of a Subversion repository.

$svn_repos = "/home/svn/repos";

$backups_dir = "/home/svn/backups";

$backup_file = "full-backup." . `date +%Y%m%d%H%M%S`;

$youngest = `svnlook youngest $svn_repos`;

chomp $youngest;

print "Backing up to revision $youngest\n";

$svnadmin_cmd = "svnadmin dump --revision 0:$youngest " .

"$svn_repos > $backups_dir/$backup_file";

`$svnadmin_cmd`;

print "Compressing dump file...\n";

print `gzip -9 $backups_dir/$backup_file`;

open(LOG, ">$backups_dir/last_backed_up");

print LOG $youngest;

close LOG;

Run the script to perform a full backup.

prompt> full-backup.pl

Backing up to revision 17

* Dumped revision 0.

* Dumped revision 1.

* Dumped revision 2.

: : :

* Dumped revision 17.

Compressing dump file...

Related Tasks

• Task 38, Backing Up and Restoring, on page 114
• Task 40, Performing Incremental Daily Backups, on the next page
• Task 42, Using Repository Hooks, on page 122

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/pg_svn/code/full-backup.pl
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=117

PERFORMING INCREMENTAL DAILY BACKUPS 118

40 Performing Incremental Daily
Backups

Building on the full backup script in the previous task, daily-backup.pl

performs an incremental backup. You should run this incremental backup
script at least daily, but you might run it more often if you’re extra paranoid.
The script loads the last_backed_up file created by the full backup, checks
to see whether there are any new revisions in the repository, and backs up
just those new revisions. If there have been no check-ins since the last full
backup, the script exits early and doesn’t create an incremental backup. The
script saves the last-backed-up revision back into last_backed_up so that
future incremental backups work correctly too.
Running the script produces output such as the following:
prompt> daily-backup.pl

Backing up revisions 18 to 18...

* Dumped revision 18.

Compressing dump file...

Once your backup regimen has been running for a while, you’ll have weekly
full backups alongside daily incremental backups. Your
/home/svn/backups directory might look like this:
prompt> ls -t /home/svn/backups

incremental-backup.20100517010008.gz

full-backup.20100516010011.gz

incremental-backup.20100515010002.gz

incremental-backup.20100514010004.gz

incremental-backup.20100513010011.gz

incremental-backup.20100512010008.gz

incremental-backup.20100511010003.gz

incremental-backup.20100510010011.gz

full-backup.20100509010014.gz

If disaster strikes and you need to restore from a backup, first use svnadmin

load to load the most recent full backup into a new repository. Then load
each subsequent incremental backup into the same repository. In the
example shown earlier, you should load the full backup from May 16 and
then load the incremental backup from May 17. All of the other backup files
have been superceded by the most recent full backup and subsequent
incremental backups.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=118

PERFORMING INCREMENTAL DAILY BACKUPS 119

Create an incremental backup script for your repository.

Download daily-backup.pl

#!/usr/bin/env perl

#

Perform an incremental backup of a Subversion repository.

$svn_repos = "/home/svn/repos";

$backups_dir = "/home/svn/backups";

$backup_file = "incremental-backup." . `date +%Y%m%d%H%M%S`;

open(IN, "$backups_dir/last_backed_up");

$previous_youngest = <IN>;

chomp $previous_youngest;

close IN;

$youngest = `svnlook youngest $svn_repos`;

chomp $youngest;

if($youngest eq $previous_youngest) {

print "No new revisions to back up.\n";

exit 0;

}

We need to backup from the last backed up revision

to the latest (youngest) revision in the repository

$first_rev = $previous_youngest + 1;

$last_rev = $youngest;

print "Backing up revisions $first_rev to $last_rev...\n";

$svnadmin_cmd = "svnadmin dump --incremental " .

"--revision $first_rev:$last_rev " .

"$svn_repos > $backups_dir/$backup_file";

`$svnadmin_cmd`;

print "Compressing dump file...\n";

print `gzip -9 $backups_dir/$backup_file`;

open(LOG, ">$backups_dir/last_backed_up");

print LOG $last_rev;

close LOG;

Related Tasks

• Task 38, Backing Up and Restoring, on page 114
• Task 39, Performing Full Weekly Backups, on page 116

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/pg_svn/code/daily-backup.pl
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=119

SECURING A REPOSITORY 120

41 Securing a Repository

Most organizations should use a single Subversion repository for all their
projects. You should consider using multiple repositories only if you have
run into a roadblock using a single repository, such as needing to support
hundreds of users and not having enough room on a single server. Given that
a typical Subversion repository supports multiple projects, you’ll often want
to limit access to each project to certain groups of users. If you’re hosting
your Subversion repository using Apache or svnserve, Subversion’s
path-based security can solve the problem.
Path-based security is enabled in Apache by including the
AuthzSVNAccessFile directive for your repository. If you’re using svnserve,
you need to edit svnserve.conf and set the authz-db configuration property.
Either way, the configuration file for path-based security has the same
format.
The [groups] section allows you to define groups of users. In our example,
we have defined administrators, developers, and a web development team.
Each of the subsequent configuration sections defines a path within the
repository and the security we want to apply to that path. Users are specified
by name or group. You can refer to all authenticated users with the special
token $authenticated and to all anonymous users with $anonymous.
Security for each user or group can be r for read-only access, rw for
read-write access, or blank for no access.
In our example, we have security definitions for three paths in the repository.
The root of the repository is writable by the administrators so they can create
new projects, readable by all others users, and not accessible for anonymous
users. The /mbench project directory is read-write for administrators and
developers and read-only for everyone else. The /website_project directory
is read-write for the web development team and not accessible for everyone
else. Presumably the new corporate website is super-secret and needs to be
kept locked down!
Once you have configured path-based security, you need to restart Apache
for the new settings to take effect. Once Apache has restarted, you can edit
dav_svn.authz to make security changes, and Subversion will notice
modifications to the file and reconfigure security on the fly.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=120

SECURING A REPOSITORY 121

Enable Apache’s path-based security module.

Edit /etc/apache2/mods-enabled/dav_svn.conf, and ensure that for
your repository the following Apache directive is uncommented:
AuthzSVNAccessFile /etc/apache2/dav_svn.authz

Configure path-based security for your repository.

Create /etc/apache2/dav_svn.authz, and edit it to reflect the security
configuration for your repository and users:
[groups]

admins = mike, ian

developers = mike, ian, ben

web_team = ben, natalie

[/]

admins = rw

* = r

[/mbench]

admins = rw

developers = rw

* = r

[/website_project]

web_team = rw

* =

Restart Apache to enable the new configuration.

prompt> sudo /etc/init.d/apache2 restart

Related Tasks

• Task 33, Installing Subversion Server, on page 104
• Task 34, Creating a Repository, on page 106
• Task 5, Creating an Empty Project, on page 24

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=121

USING REPOSITORY HOOKS 122

42 Using Repository Hooks

Subversion exposes a number of integration points into its transaction life
cycle. These integration points are called hooks, and they correspond to events
in the repository such as committing a change, locking and unlocking files,
and altering revision properties. When Subversion gets to each point in its
transaction life cycle, it will check for and execute the appropriate hook script.
Hook scripts have access to the in-flight transaction as it is being processed
and are passed different command-line arguments depending on which hook
script is executing. For example, the pre-commit hook is told the repository
path and the transaction ID for the currently executing commit. If a hook
script returns a nonzero exit code, Subversion will abort the transaction and
return the script’s standard error output as a message to the user.
Your repository’s hooks directory contains example scripts for each hook,
with a .tmpl extension. To use one of the example scripts, rename it, and
drop the .tmpl extension. Windows hook scripts should have a .bat or .exe

extension. The example hook scripts are an excellent resource for learning
what each script should do—they are well commented and explain a lot
about what’s going on when the script is executed.
The following hook scripts are used most often:
pre-commit Executed before a change is committed to the repository.

Often used to check log messages, to format files, and to perform
custom security or policy checking.

pre-lock Executed before a lock is granted. Usually used to enforce rules
around which users are allowed to lock files.

pre-unlock Executed before an unlock operation completes. Usually used
to enforce rules around which users are allowed to steal locks.

post-commit Executed once the commit has completed. Often used to
inform users about a completed commit, for example by sending an
email to the team.

Although hook scripts have access to the transaction, they absolutely must
not alter the content of the transaction. Some teams want to ensure all their
source code is formatted to a particular standard and try to use a hook script
to do the formatting. The problem with this approach is that the server has
no way to inform the client that their files were modified during the commit,
leading to out-of-sync working copies. The best choice in this case is to use
a pre-commit hook to reject code that violates your standard, forcing a
developer to reformat before they commit.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=122

USING REPOSITORY HOOKS 123

Use a pre-commit hook to validate log messages.

Inside your repository hooks directory, create a file pre-commit with the
following content:
#!/usr/bin/perl

$repos=$ARGV[0];

$txn=$ARGV[1];

$svnlook = "/usr/bin/svnlook";

$wc = "/usr/bin/wc";

$log_words = `$svnlook log -t "$txn" "$repos" | $wc -w`;

if($log_words < 1) {

print STDERR "You must enter a log message.\n";

exit 1;

}

exit 0;

Make sure the script is executable.
hooks> chmod +x pre-commit

Use a pre-commit hook to ensure tags are read-only.

Create a pre-commit script with the following content:
#!/usr/bin/perl

$repos=$ARGV[0];

$txn=$ARGV[1];

$svnlook = "/usr/bin/svnlook";

@log_lines = `$svnlook changed -t "$txn" "$repos"`;

foreach $line (@log_lines) {

if($line =~ /^U.*\/tags\//) {

print STDERR "You cannot modify a tagged file.\n";

exit 1;

}

}

hooks> chmod +x pre-commit

Related Tasks

• Task 34, Creating a Repository, on page 106
• Task 41, Securing a Repository, on page 120

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=123

Part VIII

Advanced Topics

Download from Wow! eBook <www.wowebook.com>

ADVANCED TOPICS 125

Subversion includes some advanced features that you might not

need every day. Questions do often come up about these subjects,

so we wanted to include extra information for advanced users.

Covered in this part:

• Subversion uses properties to control some of its features. One

example is ignoring files using the svn:ignore property on a

directory. So far we’ve glossed over what properties really are;

Task 43, Working with Properties, on the following page ex-

plains the topic in full.

• Subversion’s directory-based structure is flexible and free-

form, with only community conventions to tell you how to

structure projects inside your repository. Handling multiple

projects is a common area of concern. Task 45, Organizing

Multiple Projects, on page 130 covers a proven strategy for

storing many projects in a single repository.

• Some users may want to store third-party source code inside a

Subversion repository for safety in case a vendor disappears or

to provide some control over the kind of third-party code that

is used within their organization. If you want to properly track

third-party code within your repository, you’ll need to learn a

few tricks, covered in this part of the book.

• Some users dealing with large files or repositories might need

to work directly with the repository, bypassing a working copy.

We discuss why you might want to do this, and how you

should do it, in Task 47, Working Directly with the Repository ,

on page 134.

• If you have changes that you want to move around without

checking in, for example via email, Task 48, Using Patch Files,

on page 136 describes how you can do this.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=125

WORKING WITH PROPERTIES 126

43 Working with Properties

Subversion tracks changes for directories and file contents, but it also tracks
changes for properties attached to files and directories. Properties each have
a name and text or binary content. Subversion tracks properties just like file
content, so you must commit changes to properties, you can revert changes
you no longer want, and it’s possible for properties to be in conflict.
Subversion reserves properties whose names begin with svn: for
special Subversion features. Ignoring files, enabling file locking, and setting
up Subversion externals all use properties to tell Subversion how to behave.
Properties can also be used by a development team if there are pieces of
information that should be attached to a file but aren’t part of the file’s content.
The example on the facing page shows how to use a custom reviewed-by

property to mark Java source code as being “reviewed” by another
developer. When the code review is complete, we set the property to indicate
who did the review. Other users can retrieve the property and see who, if
anyone, reviewed the file. Of course, this isn’t a very good system for doing
code reviews—as soon as someone changes the file content, the review no
longer applies to the new version of the file—but you can see how a team
might build elements of their process around Subversion properties.
The Subversion command-line client includes a number of commands for
manipulating properties. In addition to propset, propget, and propdel,
proplist will list all properties on a file or directory, and propedit will fire up
an editor to make changes to a property.
Tortoise provides a sophisticated graphical interface for manipulating
properties. It even allows the import and export of property values so you
can set a property to be binary content, such as an image. Cornerstone
restricts property editing so you can only manipulate Subversion-specific
properties such as svn:needs-lock.
Once you have finished altering properties, you need to commit your
changes to the repository, just like file content changes. If you change your
mind, you can revert a file to undo property changes. Bear in mind that
reverting a file will also undo any changes to the file’s contents.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=126

WORKING WITH PROPERTIES 127

Set a text property on a file.

mbench> svn propset reviewed-by "mike mason: code is good" \

src/mbench.java

property 'reviewed-by' set on 'src/mbench.java'

mbench> svn commit -m "Add code review comment"

Retrieve a text property on a file.

mbench> svn propget reviewed-by src/mbench.java

mike mason - code looks good

Remove a property from a file.

mbench> svn propdel reviewed-by src/mbench.java

property 'reviewed-by' deleted from 'src/mbench.java'.

Edit a text property on a file.

mbench> svn propedit reviewed-by src/mbench.java

Alter properties using Tortoise.

Right-click a file or directory, and choose TortoiseSVN > Properties. Use the
New..., Edit..., and Remove buttons to alter properties. Commit your changes
once you are happy with the new properties.

Alter properties using Cornerstone.

Use the working copy browser to find the file or directory for which you
want to change properties. Ensure the Inspector panel is active, and then
click the Properties button in the Inspector panel. Alter properties, and then
commit your changes to the repository.

Related Tasks

• Task 16, Ignoring Files, on page 50
• Task 29, Enabling File Locking, on page 92
• Task 44, Using Externals, on the following page

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=127

USING EXTERNALS 128

44 Using Externals

Within an organization, it’s quite likely that development teams will want to
share assets between projects. It might be a goal for projects to use a
common set of third-party components or for certain projects to share parts
of their source code for other projects to use. Subversion’s externals provide
an easy way to include portions of a repository within a project.
Externals are controlled through the svn:externals property, which can be
set on any directory within a repository. When a Subversion client sees the
external, it attempts to contact the specified Subversion repository and check
out a portion of that repository into the working copy. An external can refer
to a directory or a single file that you want to include in your working copy.
Once you have set svn:externals on a directory, doing an update causes the
Subversion client to pull in the extra directories or files.
svn:externals is a multiline property with each line specifying a source URL
for the external and a target directory in the working copy. Source URLs can
be absolute or relative; you should always use a relative URL if you are
referring to the current repository.
Relative URLs always refer to the repository in which the external is
defined, and they’re especially useful when a repository has multiple access
methods or names. For example, on my machine, I might refer to http://svn.
mycompany.com/mbench, and you might refer to https://svn/mbench. Both
these URLs point to the same repository—which one is right to use in an
external? Subversion solves this problem by providing the following relative
URL definitions:
../ Relative to the directory on which svn:externals is set
^/ Relative to the root of the repository in which svn:externals is set
// Relative to the scheme of the URL of the directory on which

svn:externals is set
/ Relative to the root URL of the server on which svn:externals is set
In our example, we use ^/libraries to mean the libraries directory in the root
of the current repository. Clients using different access schemes such as svn,
http, and https will all translate the external correctly.
Once you have made a change to svn:externals, as with any other property
change, you must commit to the repository before anyone else will see the
new externals.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://svn.mycompany.com/mbench
http://svn.mycompany.com/mbench
https://svn/mbench
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=128

USING EXTERNALS 129

Add libraries to your project using externals.

Use svn propedit or the Tortoise or Cornerstone GUI to edit the
svn:externals property on the base directory of your project.
^/libraries/MongoDB/1.4 libraries/mongo

Run an update to ensure the new external works as you expect, and then
commit your changes to the repository.
mongo> svn update

Fetching external item into 'libraries/mongo'

A libraries/mongo/mongo.jar

Updated external to revision 25.

Updated to revision 25.

mongo> svn commit -m "Pulled in Mongo 1.4 library"

Add third-party code to your project using externals.

Use svn propedit or the Tortoise or Cornerstone GUI to edit the
svn:externals property on the base directory of your project.
http://svn.apache.org/repos/asf/subversion/trunk/notes/

dependencies/subversion

Run an update to ensure the new external works as you expect, and then
commit your changes to the repository.
mongo> svn update

Fetching external item into 'dependencies/subversion'

A dependencies/subversion/repos_upgrade_HOWTO

A dependencies/subversion/sasl.txt

A dependencies/subversion/svnsync.txt

: : :

A dependencies/subversion/wc-ng/transitions

A dependencies/subversion/asp-dot-net-hack.txt

Updated external to revision 947760.

Updated to revision 25.

mongo> svn commit -m "Added Subversion notes as dependencies"

Related Tasks

• Task 43,Working with Properties, on page 126
• Task 45, Organizing Multiple Projects, on the following page

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=129

ORGANIZING MULTIPLE PROJECTS 130

45 Organizing Multiple Projects

One of the most common questions asked by teams new to Subversion is,
“How can we host multiple projects within a repository?” Subversion uses
directories to organize projects, and directories are also used to store tags
and branches, so there are many different project structures that can work.
The simplest organization strategy is to have a root-level directory for each
project. Within each project directory, you should create the usual trunk,
tags, and branches subdirectories. Each project is then free to evolve
independently, branching and creating release tags as they see fit. If you
want to share artifacts between projects, you can use Subversion externals to
include directories from one project inside another project. You might do
this if one of the projects is a utility designed to be shared across projects.
More complex organization schemes are possible. One common question is
around dependent projects that need to have a similar life cycle, for example
components of a services ecosystem. These components are interdependent,
so you might put them all inside a single trunk directory and then branch and
tag them as a unit. This approach can work but is usually a mistake—as soon
as one of the components wants to evolve at a different rate than the others,
the model is broken.
If you are using externals to share code or libraries between projects, you
need to take extra care when dealing with release branches. On a release
branch, we want to be able to re-create the exact state of the code and any
dependencies, but an external that references the trunk of another project can
change over time. On a release branch, always update your externals so that
they point to a tagged release from another project, or use pegged revisions17
for all your externals.
When deciding on how to structure your Subversion repository, make sure to
think about the kinds of projects you want to store, whether those projects
have interdependencies, and how the projects evolve over time. Try a few
thought experiments to see how branching, releasing, and bug fixing would
work with your structure. Finally, make sure both developers and Subversion
administrators understand your organization strategy.

17. http://svnbook.red-bean.com/en/1.5/svn.advanced.externals.html

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://svnbook.red-bean.com/en/1.5/svn.advanced.externals.html
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=130

ORGANIZING MULTIPLE PROJECTS 131

Create repository directories for your projects.

In the root of your repository, create a base directory for each project. Inside
each project directory, create trunk, tags, and branches subdirectories.

repository
root

trunk

tags

branches

mbench

mbench

mbench
kithara

mbench
services

client

trunk

tags

branches

trunk

tags

branches

Use externals to share code or other artifacts between projects.

If one of your projects is creating a shared library for use by other projects,
use svn:externals to include part of a project inside another project.

mbench
kithara

services
client

trunk

trunk

dependencies

src

mbench
services

client

svn:externals

Related Tasks

• Task 5, Creating an Empty Project, on page 24
• Task 44, Using Externals, on page 128

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=131

STORING THIRD-PARTY CODE 132

46 Storing Third-Party Code

Most third-party libraries are distributed in binary format, usually as a .dll or
.jar file that you can link directly into your project. Some vendors provide
source code in addition to binaries, and it can be useful to track that source
code yourself. If the vendor ever goes away, you’ll still have all the source
code and will be able to make changes and bug fixes to the library.
You should store all your vendor source code in one place in your repository.
In the instructions on the facing page, we put all vendor code in named
directories beneath /vendorsrc. Start by unzipping the source code
(sometimes called a code drop) to a temporary directory. Next, import the
code drop into a current directory inside the repository. We’ll use the
current directory for future code drops. Finally, create a tag for the release.
When other projects want to use the third-party source code, they should
always use a tagged version, never current.
When a new version of the library becomes available, we need to update our
current version to match the new code drop. We’re trying to mimic inside
Subversion what would have happened during the vendor’s development of a
new release. The vendor has probably added files, removed files, and updated
file content. To mimic this, we might check out a working copy of current

and then unzip the new code drop over the top. This would give us a working
copy with all the updated files, but it wouldn’t help us with files that the
vendor added or removed in the new code drop. Manually figuring out how
to sync a working copy of current with a new code drop is a lot of work.
Fortunately, there’s a Python tool that does all the heavy lifting for us.
svn-load is available online18 and requires the Python Subversion bindings.
If you’re using Ubuntu, run apt-get install svn-load to install svn-load and
its dependencies.
Unzip the new code drop in a temporary directory. Run svn-load, telling it
the new tag version you’d like to apply, the URL for the current directory,
and the location of the new code drop on your local machine. svn-load will
automatically figure out which files have been added, removed, or changed
by the vendor. svn-load will update the current directory in the repository
and tag it with the new version number. Teams can then update their projects
and use the new release.

18. http://free.linux.hp.com/~dannf/svn-load/

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://free.linux.hp.com/~dannf/svn-load/
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=132

STORING THIRD-PARTY CODE 133

Import third-party source code.

Extract the third-party source code to a temporary directory. Here we use
/temp/NUnit-2.5.0.
temp> svn import -m "Import NUnit 2.5.0" NUnit-2.5.0 \

http://svn.mycompany.com/vendorsrc/nunit/current

Adding NUnit-2.5.0/NUnitTests.config

Adding NUnit-2.5.0/NUnitFitTests.html

: : :

Adding NUnit-2.5.0/install/NUnit.wxs

Adding NUnit-2.5.0/license.rtf

Create a tagged version of the third-party code.

temp> svn copy -m "Tag 2.5.0 vendor drop" \

http://svn.mycompany.com/vendorsrc/nunit/current \

http://svn.mycompany.com/vendorsrc/nunit/2.5.0

Committed revision 29.

Update to a new third-party release.

Extract the new code drop to a temporary directory. Here we use
/temp/NUnit-2.5.5.
temp> svn-load -t 2.5.5 http://svn.mycompany.com/vendorsrc/nunit \

current NUnit-2.5.5

Deleted Added

0 doc/img/assemblyReloadOptions.JPG___ doc/assemblyIsolation.html

1 doc/img/testResultOptions.JPG_______ doc/runningTests.html

2 doc/img/textOutputOptions.jpg_______ doc/runtimeSelection.html

: : :

Enter two indexes for each column to rename,

(R)elist, or (F)inish: F

Related Tasks

• Task 6, Creating a Project from an Existing Source Tree, on page 26
• Task 28, Tagging a Release, on page 86

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=133

WORKING DIRECTLY WITH THE REPOSITORY 134

47 Working Directly with the Repository

Most of the time you should make changes to a Subversion working copy
and then commit those changes to the repository. This gives you a chance to
think about the changes, revert unwanted or erroneous modifications, and
even run a build to make sure everything works before you commit. There
are times, though, when you might want to work directly with the repository.
For some Subversion commands, you can use a repository URL instead of
referring to working copy files.
You can copy, move, rename, and delete items directly in the repository. You
might want to do this if the files are large and would take a long time to
manipulate in a working copy. You might also want to do this if you recently
imported a large number of files and need to rearrange them. If developers
are working on files when they are moved, Subversion will report a tree
conflict when they attempt to commit their changes. If a user has a file
locked, it cannot be moved, renamed, or deleted within the repository until
the lock is released.
Subversion stores history forever. In our example, we’re deleting a password
file that someone has accidentally added to the repository. Deleting a file
only removes it from Subversion’s “current” view of what’s in the repository.
If someone knows that the password file is there, they can go back in time
using Subversion’s history features and retrieve the file. If you do
accidentally commit confidential information to a Subversion repository, you
will have to do a lot of work to really remove the data by dumping the
repository and then reloading it using svndumpfilter to filter out the
confidential file.19 The dump/load process can be quite time-consuming and
will involve downtime on the repository. Be careful what you commit!

19. http://svnbook.red-bean.com/en/1.5/svn.reposadmin.html has more information about the
svndumpfilter command.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://svnbook.red-bean.com/en/1.5/svn.reposadmin.html
http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=134

WORKING DIRECTLY WITH THE REPOSITORY 135

Copy an item directly on the repository.

mbench> svn cp http://svn.mycompany.com/mbench/trunk/lib/mongo-1.4.jar \

http://svn.mycompany.com/libraries/mongo \

-m "Copy Mongo jar to shared libraries directory"

Rename an item directly on the repository.

mbench> svn mv http://svn.mycompany.com/mbench/trunk/docs \

http://svn.mycompany.com/mbench/trunk/documentation \

-m "Renaming to make us look more professional"

Delete an item from the repository.

mbench> svn rm http://svn.mycompany.com/mbench/trunk/config/passwd \

-m "Removing accidentally added password file"

Rename a repository item using Tortoise.

Right-click in your project working copy, and choose TortoiseSVN >
Repo-browser. Navigate to the item you want to rename, right-click it, and
choose Rename. Type a new name for the item, and press Enter.
Enter a log message explaining the reason for the change, and then click OK
to complete the change.

Rename a repository item using Cornerstone.

Select your repository from the repository source list. Using the repository
browser, navigate to the item you want to rename. Select the item, pause for
a second, and then click the item name again to make it editable. Type a new
name for the item, and press Enter.
Enter a log message explaining the reason for the change, and then click
Continue to complete the change.

Related Tasks

• Task 13, Removing Files and Directories, on page 44
• Task 14,Moving and Renaming Files and Directories, on page 46

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=135

USING PATCH FILES 136

48 Using Patch Files

Occasionally you might want to save a copy of your working copy changes
without committing them to the repository. You might decide your changes
aren’t yet ready for prime time and that you want to keep them for later
(although in this case, creating a feature branch and checking in to the
branch is safer). Alternatively, you might be working on an open source
project on the Internet and not have commit access to the repository. Instead
of committing your changes directly, you need to send them to someone else
on the project who has commit access.
Patch files are the Unix world’s solution to this problem. A patch file is a
description of changes you have made to some files. You can send the patch
file to someone else who has the original files, and they can apply the patch
to get your changes. Patch files include a special syntax that often allows
them to work even if the person you’re sending the patch to doesn’t have
exactly the same revision of the files as were used to create the patch.
Subversion’s diff command shows working copy modifications in “unified
diff” format so you can create a patch file by saving svn diff results to a file.
Tortoise and Cornerstone allow you to select a file or directory and save any
modifications to a patch file.
Once you have a patch file, you can send it to someone else or keep it
somewhere safe for your own use. To apply a patch file, use the Unix patch

command or the Tortoise or Cornerstone “apply patch” functionality.
Applying a patch takes the changes described in the patch file and attempts
to perform them on another set of files. For our purposes, this should always
be another Subversion working copy.
If the patch does not apply cleanly, it’s usually because the new working
copy where the patch is being applied has a different revision of the files
than were used to create the patch. The various different patch tools handle
this in different ways.
The command-line and Cornerstone clients both use the Unix patch

command to apply patches. If a patch can’t be applied successfully, patch

saves rejected “hunks” to a copy of the file with a .rej suffix. You can look at
the reject files and attempt to resolve the conflicts yourself. If Tortoise can’t
apply a patch cleanly, you can use the TortoiseMerge tool to resolve
conflicts, as described in Task 19, Handling Conflicts Using Tortoise, on
page 60.

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=136

USING PATCH FILES 137

Create a patch file using the command-line client.

mbench> svn diff > mychanges.patch

Apply a patch file using the command-line client.

mbench2> patch < mychanges.patch

Create a patch file using Tortoise.

Right-click the base directory for your working copy, and choose
TortoiseSVN > Create patch.... Select the files you want to include in the
patch, and click OK.
Specify a file in which to save the patch, and then click Save. Tortoise will
create the patch file, save it to disk, and then display it in a graphical browser.

Apply a patch file using Tortoise.

Right-click the base directory for your working copy, and choose
TortoiseSVN > Apply patch.... Browse to your patch file, select it, and click
Open.
Tortoise will open two windows, one listing the files in the patch and the
other a large TortoiseMerge window. For each file to be patched,
double-click the filename to apply the changes in the merge window. If
you’re happy that the changes applied correctly, press Ctrl+S to save the
changes.

Create a patch file using Cornerstone.

Select your working copy from the working copy sources list. Click the File
menu, and choose Save Differences in “mbench” as Patch.... Enter a
filename, and click Save to create the patch file.

Apply a patch file using Cornerstone.

Select your working copy from the working copy sources list. Click the File
menu, and choose Apply Patch to “mbench2”.... Browse to your patch file,
and click Apply.

Related Tasks

• Task 8, Seeing What You’ve Changed, on page 34
• Task 11, Committing Changes, on page 40

Report erratum

this copy is (P1.0 printing, October 2010)Download from Wow! eBook <www.wowebook.com>

http://books.pragprog.com/titles/pg_svn/errata/add?pdf_page=137

Bibliography
[Mas06] Mike Mason. Pragmatic Version Control Using Subversion.

The Pragmatic Programmers, LLC, Raleigh, NC, and Dallas,
TX, second edition, 2006.

[Swi08] Travis Swicegood. Pragmatic Version Control using Git. The
Pragmatic Programmers, LLC, Raleigh, NC, and Dallas, TX,
2008.

Download from Wow! eBook <www.wowebook.com>

Index
A
access controls, 14, 120
add command, 43
annotate command, 68
Apache
repository security, 120
Subversion server installation, 104–106

atomic commit, 10

B
backups, 114–118
base directory, 23, 25
base URL, 22
Beanstalk, 111
blame command, 68
branches
checking out, 79
creating, 78
directory structure, 24
feature branches, 75, 84
merging changes from trunk, 82
merging changes to trunk, 84
release branches, 73–75
switching to, 80

C
change tracking
blame information, 68
history, 65–71
merge tracking, 84
in working copy, 34–39

changesets, see revisions
check-in, see commit command
checkout command, 33
client-server model, 14
clients for Subversion
command-line, 17
Mac OS X, 21
Windows, 18

CollabNet, 17, 108

command-line client, 16, 17
commit command, 41
commit messages, 40, 65
commit process, 10
concurrency, 53, 58, 89
conflicts, 53, 58–63
copy command, 79, 87
Cornerstone
adding files and directories, 43
adding repositories, 20
altering properties, 127
applying patch files, 137
checking out a working copy, 33
committing changes, 41
conflict handling, 62
creating branches, 79
creating local repositories, 23
creating patch files, 137
creating projects, 25
creating release tags, 87
enabling locks, 93
ignoring files and directories, 51
importing source trees, 27
installing, 20
locking files, 95
moving files and directories, 46
removing files and directories, 45
renaming files and directories, 46
renaming repository items, 135
reverting changes, 48
reverting committed revisions, 70
stealing locks, 99
unlocking files, 97
updating to latest revision, 56
viewing change logs, 67
viewing changes, 38
viewing update messages, 56

cross-platform operation, 10
CVS repositories, 112
cvs2svn tool, 112

Download from Wow! eBook <www.wowebook.com>

DELETE COMMAND REPOSITORIES

D
delete command, 45
diff command, 34, 136
dump files, 114

E
Eclipse, 15
externals, 128
externals property, 128

F
feature branches, 75, 84
files
adding to working copy, 42
change tracking, 34–39
checking out, 32
committing changes, 40
conflicts in, 53, 58–63
ignoring, 50
importing into project, 26
locking/unlocking, 92–99
moving, 46
patch files, 136
removing, 44
renaming, 46
reverting changes, 48
viewing blame information, 68
viewing changes, 34

Fink, 17
forks, see branches

H
history, 65–71
hook scripts, 122

I
ignore property, 50
import command, 27
info command, 80
IntelliJ, 15

L
libraries (third-party), 132
local repositories, 22
lock command, 95, 99
locks, 89, 92–99
log command, 66
log messages, 65

M
MacPorts, 17
merge command, 71, 83, 85

merge conflicts, 58
merge tracking, 84
meta data, see properties
mkdir command, 25
move command, 46
mv command, 47

N
needs-lock property, 92
network security, 14

O
optimistic locking, 53

P
patch files, 136
pessimistic locking, 89
projects
checking out, 32
creating, 24
directory structure, 24
history, 65–71
importing source trees to, 26
security, 120

properties, 126

R
RapidSVN, 16
rebasing, 84
reintegration, 84
releases, 86
rename command, 46
repositories
adding files and directories, 42
backups, 114–118
base URL, 22
branches, 73–75, 78, 82
change logs, 66–71
committing changes to, 40
creating, on Apache, 106
creating, on Windows, 108
direct changes to, 134
directory structure, 24, 130
externals, 128
history, 65–71
hooks, 122
importing source trees to, 26
local, 22
migrating from CVS, 112
moving files and directories, 46
multiple projects in, 24, 130
removing files and directories, 44
renaming files and directories, 46

140
Download from Wow! eBook <www.wowebook.com>

RESOLVED COMMAND VISUAL STUDIO

restoring from dump files, 114, 118
security, 14, 120
third-party code in, 132
undoing committed changes, 70

resolved command, 59
reverse merges, 70
revert command, 48
revision numbers, 10
revisions
creating, 40
history, 65
merging to a branch, 83
reverting, 70
updating to latest, 56

S
security
access controls, 14, 120
network connections, 14

servers
Apache on Ubuntu Linux, 104
svnserve on a LAN, 101
svnserve on Windows, 108
third-party hosting, 110

SourceForge, 111
status command, 34
Subcommander, 16
Subversion
availability, 16
centralized model, 9
client installation, 16–21
client-server model, 14
commit process, 10
cross-platform operation, 10
security model, 120
server installation, 104–109
versions of, 12, 16

.svn directories, 32, 48
svn-load tool, 132
svn:externals property, 128
svn:ignore property, 50
svn:needs-lock property, 92
svnadmin command

create, 23, 106, 109
dump, 114
load, 114, 118
verify, 114

svnlook command, 116
svnserve server, 101, 108
switch command, 80
Synaptic package manager, 17
sync, see update command

T
tags
creating, 86
directory structure, 24
when to use, 75

third-party code, 132
TortoiseMerge tool, 60
TortoiseSVN
adding files and directories, 43
altering properties, 127
applying patch files, 137
checking out a working copy, 33
committing changes, 41
conflict handling, 60
context menu settings, 18
creating branches, 79
creating local repositories, 23
creating patch files, 137
creating projects, 25
creating release tags, 87
enabling locks, 93
ignoring files and directories, 51
importing source trees, 27
installing, 19
locking files, 95
merging changes to trunk, 85
merging revisions to branch, 83
moving files and directories, 46
removing files and directories, 45
renaming files and directories, 46
renaming repository items, 135
reverting changes, 49
reverting committed revisions, 71
stealing locks, 99
switching to branches, 81
unlocking files, 97
updating to latest revision, 56
viewing blame information, 68
viewing change logs, 67
viewing changes, 36
viewing update messages, 56

trunk directory, 24, 32

U
Unfuddle, 111
unlock command, 97, 99
update command, 56, 58

V
version command, 16
Visual Studio, 15

141
Download from Wow! eBook <www.wowebook.com>

WORKING COPY XCODE

W
working copy
adding files and directories, 42
change logs, 66
checking out, 32, 79
committing changes, 41
creating release tags, 86
ignoring files and directories, 50
moving files and directories, 46

removing files and directories, 44
renaming files and directories, 46
reverting changes, 48
updating to latest revision, 56
viewing changes, 34

X
Xcode, 15

142
Download from Wow! eBook <www.wowebook.com>

The Pragmatic Bookshelf
Available in paperback and DRM-free eBooks, our titles are here to help you stay on top of
your game. The following are in print as of October 2010; be sure to check our website at
pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build Stunning
Rails Apps

2008 9780978739225 464

Agile Coaching 2009 9781934356432 248
Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200
Agile Web Development with Rails 2009 9781934356166 792
Beginning Mac Programming: Develop with Objective-C
and Cocoa

2010 9781934356517 300

Behind Closed Doors: Secrets of Great Management 2005 9780976694021 192
Best of Ruby Quiz 2006 9780976694076 304
Cocoa Programming: A Quick-Start Guide for
Developers

2010 9781934356302 450

Core Animation for Mac OS X and the iPhone: Creating
Compelling Dynamic User Interfaces

2008 9781934356104 200

Core Data: Apple’s API for Persisting Data on Mac OS X 2009 9781934356326 256
Data Crunching: Solve Everyday Problems using Java,
Python, and More

2005 9780974514079 208

Debug It! Find, Repair, and Prevent Bugs in Your Code 2009 9781934356289 232
Deploying Rails Applications: A Step-by-Step Guide 2008 9780978739201 280
Design Accessible Web Sites: 36 Keys to Creating
Content for All Audiences and Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open Source
Tools

2008 9781934356067 368

Domain-Driven Design Using Naked Objects 2009 9781934356449 375
Enterprise Integration with Ruby 2006 9780976694069 360
Enterprise Recipes with Ruby and Rails 2008 9781934356234 416
Everyday Scripting with Ruby: for Teams, Testers, and
You

2007 9780977616619 320

ExpressionEngine 2: A Quick-Start Guide 2010 9781934356524 250
From Java To Ruby: Things Every Manager Should Know 2006 9780976694090 160
FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240
GIS for Web Developers: Adding Where to Your Web
Applications

2007 9780974514093 275

Google Maps API: Adding Where to Your Applications 2006 PDF-Only 83
Grails: A Quick-Start Guide 2009 9781934356463 200
Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264
Hello, Android: Introducing Google’s Mobile
Development Platform

2010 9781934356562 320

Continued on next page

Download from Wow! eBook <www.wowebook.com>

pragprog.com

Title Year ISBN Pages
Interface Oriented Design 2006 9780976694052 240
iPad Programming: A Quick-Start Guide for iPhone
Developers

2010 9781934356579 248

iPhone SDK Development 2009 9781934356258 576
Land the Tech Job You Love 2009 9781934356265 280
Language Implementation Patterns: Create Your Own
Domain-Specific and General Programming Languages

2009 9781934356456 350

Learn to Program 2009 9781934356364 240
Manage It! Your Guide to Modern Pragmatic Project
Management

2007 9780978739249 360

Manage Your Project Portfolio: Increase Your Capacity
and Finish More Projects

2009 9781934356296 200

Mastering Dojo: JavaScript and Ajax Tools for Great
Web Experiences

2008 9781934356111 568

Metaprogramming Ruby: Program Like the Ruby Pros 2010 9781934356470 240
Modular Java: Creating Flexible Applications with OSGi
and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240
No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320
Pomodoro Technique Illustrated: The Easy Way to Do
More in Less Time

2009 9781934356500 144

Practical Programming: An Introduction to Computer
Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208
Pragmatic Guide to Git 2010 9781934356722 168
Pragmatic Project Automation: How to Build, Deploy,
and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your
Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176
Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160
Pragmatic Version Control using CVS 2003 9780974514000 176
Pragmatic Version Control Using Git 2008 9781934356159 200
Pragmatic Version Control using Subversion 2006 9780977616657 248
Programming Clojure 2009 9781934356333 304
Programming Cocoa with Ruby: Create Compelling Mac
Apps Using RubyCocoa

2009 9781934356197 300

Programming Erlang: Software for a Concurrent World 2007 9781934356005 536
Programming Groovy: Dynamic Productivity for the Java
Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic Programmers’ Guide 2004 9780974514055 864
Programming Ruby 1.9: The Pragmatic Programmers’
Guide

2009 9781934356081 960

Continued on next page

Download from Wow! eBook <www.wowebook.com>

Title Year ISBN Pages
Programming Scala: Tackle Multi-Core Complexity on
the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew
JavaScript Could Do This!

2007 9781934356012 448

Rails for .NET Developers 2008 9781934356203 300
Rails for Java Developers 2007 9780977616695 336
Rails for PHP Developers 2008 9781934356043 432
Rails Recipes 2006 9780977616602 350
Rapid GUI Development with QtRuby 2005 PDF-Only 83
Release It! Design and Deploy Production-Ready
Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192
Seven Languages in Seven Weeks: A Pragmatic Guide to
Learning Programming Languages

2010 9781934356593 300

Ship It! A Practical Guide to Successful Software Projects 2005 9780974514048 224
SQL Antipatterns: Avoiding the Pitfalls of Database
Programming

2010 9781934356555 352

Stripes ...and Java Web Development Is Fun Again 2008 9781934356210 375
Test-Drive ASP.NET MVC 2010 9781934356531 296
TextMate: Power Editing for the Mac 2007 9780978739232 208
The Agile Samurai: How Agile Masters Deliver Great
Software

2010 9781934356586 280

The Definitive ANTLR Reference: Building
Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a Remarkable
Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240
Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400
Web Design for Developers: A Programmer’s Guide to
Design Tools and Techniques

2009 9781934356135 300

Download from Wow! eBook <www.wowebook.com>

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles continue
the well-known Pragmatic Programmer style and continue to garner awards and rave reviews. As
development gets more and more difficult, the Pragmatic Programmers will be there with more
titles and products to help you stay on top of your game.

Visit Us Online
Pragmatic Guide to Subversion

http://pragprog.com/titles/pg_svn
Source code from this book, errata, and other resources. Come give us feedback, too!
Register for Updates

http://pragprog.com/updates
Be notified when updates and new books become available.
Join the Community

http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with our
wiki, and benefit from the experience of other Pragmatic Programmers.
New and Noteworthy

http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available for
purchase at our store: pragprog.com/titles/pg_svn.

Contact Us
Online Orders: www.pragprog.com/catalog
Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/pg_svn
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/pg_svn
www.pragprog.com/catalog

	Contents
	Acknowledgments
	Introduction
	Who Is This Book For?
	How to Read This Book
	Subversion Versions
	Online Resources

	Getting Started
	Task 1. Installing a Command-Line Client
	Task 2. Installing a Graphical Client on Windows
	Task 3. Installing a Graphical Client on Mac OS X
	Task 4. Creating a Local Repository
	Task 5. Creating an Empty Project
	Task 6. Creating a Project from an Existing Source Tree

	Working with Subversion
	Task 7. Checking Out a Working Copy
	Task 8. Seeing What You've Changed
	Task 9. Seeing What You've Changed Using Tortoise
	Task 10. Seeing What You've Changed Using Cornerstone
	Task 11. Committing Changes
	Task 12. Adding Files and Directories
	Task 13. Removing Files and Directories
	Task 14. Moving and Renaming Files and Directories
	Task 15. Reverting Working Copy Changes
	Task 16. Ignoring Files

	Working with a Team
	Task 17. Updating to the Latest Revision
	Task 18. Handling Conflicts
	Task 19. Handling Conflicts Using Tortoise
	Task 20. Handling Conflicts Using Cornerstone

	Using the History
	Task 21. Viewing the Log
	Task 22. Detective Work with svn blame
	Task 23. Reverting a Committed Revision

	Branching, Merging, and Tagging
	Task 24. Creating a Branch
	Task 25. Switching to a Branch
	Task 26. Merging Changes from Trunk to Branch
	Task 27. Using Change Tracking
	Task 28. Tagging a Release

	File Locking
	Task 29. Enabling File Locking
	Task 30. Obtaining a Lock
	Task 31. Releasing a Lock
	Task 32. Breaking Someone Else's Lock

	Setting Up a Server
	Task 33. Installing Subversion Server
	Task 34. Creating a Repository
	Task 35. Installing Subversion Server on Windows
	Task 36. Using Third-Party Subversion Hosting
	Task 37. Migrating a CVS Repository
	Task 38. Backing Up and Restoring
	Task 39. Performing Full Weekly Backups
	Task 40. Performing Incremental Daily Backups
	Task 41. Securing a Repository
	Task 42. Using Repository Hooks

	Advanced Topics
	Task 43. Working with Properties
	Task 44. Using Externals
	Task 45. Organizing Multiple Projects
	Task 46. Storing Third-Party Code
	Task 47. Working Directly with the Repository
	Task 48. Using Patch Files
	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

